Detecting and Measuring the Polarization Effects of Adversarial Botnets on Twitter

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu
{"title":"Detecting and Measuring the Polarization Effects of Adversarial Botnets on Twitter","authors":"Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu","doi":"10.1145/3555776.3577730","DOIUrl":null,"url":null,"abstract":"In this paper we use a Twitter dataset collected between December 8, 2021 and February 18, 2022 towards the 2022 Russian invasion of Ukraine to design a data processing pipeline featuring a high accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. In order to understand the factors leading to different effects, we analyze the interactions between the botnets and the barrier-crossing vs. barrier-bound users on their own camps. We observe that, where as the pro-Russian botnet amplifies barrier-bound partisan users on their own camp majority of the time, the pro-Ukrainian botnet amplifies barrier-crossing users on their own camp alongside themselves majority of the time.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we use a Twitter dataset collected between December 8, 2021 and February 18, 2022 towards the 2022 Russian invasion of Ukraine to design a data processing pipeline featuring a high accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. In order to understand the factors leading to different effects, we analyze the interactions between the botnets and the barrier-crossing vs. barrier-bound users on their own camps. We observe that, where as the pro-Russian botnet amplifies barrier-bound partisan users on their own camp majority of the time, the pro-Ukrainian botnet amplifies barrier-crossing users on their own camp alongside themselves majority of the time.
Twitter上对抗性僵尸网络极化效应的检测和测量
在本文中,我们使用2021年12月8日至2022年2月18日期间收集的Twitter数据集,针对2022年俄罗斯入侵乌克兰设计了一个数据处理管道,该管道具有基于高精度图卷积网络(GCN)的政治阵营分类器,僵尸网络检测算法和僵尸网络效应的鲁棒度量。我们的实验表明,亲俄僵尸网络对网络极化有显著贡献,而亲乌克兰僵尸网络对网络极化有调节作用。为了了解导致不同影响的因素,我们分析了僵尸网络与跨越障碍的用户与自己阵营中的障碍限制用户之间的相互作用。我们观察到,亲俄罗斯的僵尸网络在大多数时候放大了自己阵营中跨越障碍的党派用户,亲乌克兰的僵尸网络在大多数时候放大了自己阵营中跨越障碍的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信