Lepton anomalous magnetic moments in Lattice QCD+QED

Davide Giusti, S. Simula
{"title":"Lepton anomalous magnetic moments in Lattice QCD+QED","authors":"Davide Giusti, S. Simula","doi":"10.22323/1.363.0104","DOIUrl":null,"url":null,"abstract":"We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{\\rm HVP}$, the muon, $a_\\mu^{\\rm HVP}$, and the tau, $a_\\tau^{\\rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_\\mu^{\\rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{\\rm HVP}$, is provided. We get $a_e^{\\rm HVP} = 185.8~(4.2) \\cdot 10^{-14}$, $a_\\mu^{\\rm HVP} = 692.1~(16.3) \\cdot 10^{-10}$, $a_\\tau^{\\rm HVP} = 335.9~(6.9) \\cdot 10^{-8}$ and $a_{MUonE}^{\\rm HVP} = 91.6~(2.0) \\cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L \\simeq 1.8 ÷3.5$ fm) and with pion masses in the range between $\\simeq 220$ and $\\simeq 490$ MeV.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{\rm HVP}$, the muon, $a_\mu^{\rm HVP}$, and the tau, $a_\tau^{\rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_\mu^{\rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{\rm HVP}$, is provided. We get $a_e^{\rm HVP} = 185.8~(4.2) \cdot 10^{-14}$, $a_\mu^{\rm HVP} = 692.1~(16.3) \cdot 10^{-10}$, $a_\tau^{\rm HVP} = 335.9~(6.9) \cdot 10^{-8}$ and $a_{MUonE}^{\rm HVP} = 91.6~(2.0) \cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L \simeq 1.8 ÷3.5$ fm) and with pion masses in the range between $\simeq 220$ and $\simeq 490$ MeV.
点阵QCD+QED中的轻子反常磁矩
我们提出了强子真空极化(HVP)对电子$a_e^{\rm HVP}$、μ子$a_\mu^{\rm HVP}$和tau $a_\tau^{\rm HVP}$的异常磁矩的贡献的晶格计算,包括同位旋对称QCD项和首阶强和电磁同位旋断裂修正。此外,还提供了MUonE实验未涵盖的对$a_\mu^{\rm HVP}$的贡献$a_{MUonE}^{\rm HVP}$。我们得到$a_e^{\rm HVP} = 185.8~(4.2) \cdot 10^{-14}$$a_\mu^{\rm HVP} = 692.1~(16.3) \cdot 10^{-10}$$a_\tau^{\rm HVP} = 335.9~(6.9) \cdot 10^{-8}$和$a_{MUonE}^{\rm HVP} = 91.6~(2.0) \cdot 10^{-10}$。我们的结果是在猝灭qed近似中得到的,使用由欧洲(现在扩展的)扭曲质量协作体(ETMC)与$N_f=2+1+1$动力学夸克产生的QCD规范组态,晶格间距从$0.089$到$0.062$ fm的三个值,晶格空间大小($L \simeq 1.8 ÷3.5$ fm)的几个值,以及介子质量在$\simeq 220$和$\simeq 490$ MeV之间的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信