Low-Rank Modeling of Local Sinogram Neighborhoods with Tomographic Applications

Rodrigo A. Lobos, R. Leahy, J. Haldar
{"title":"Low-Rank Modeling of Local Sinogram Neighborhoods with Tomographic Applications","authors":"Rodrigo A. Lobos, R. Leahy, J. Haldar","doi":"10.1109/IEEECONF44664.2019.9048651","DOIUrl":null,"url":null,"abstract":"Previous work has demonstrated that Fourier imaging data will often possess multifold linear shift-invariant autoregression relationships. This autoregressive structure is useful because it enables missing data samples to be imputed as a linear combination of neighboring samples, and also implies that certain structured matrices formed from the data will have low rank characteristics. The latter observation has enabled a range of powerful structured low-rank matrix recovery techniques for reconstructing sparsely-sampled and/or low-quality data in Fourier imaging modalities like magnetic resonance imaging. In this work, we demonstrate theoretically and empirically that similar modeling principles also apply to sinogram data, and demonstrate how this can be leveraged to restore missing information from real high-resolution X-ray imaging data from an integrated circuit.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"41 1","pages":"65-68"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous work has demonstrated that Fourier imaging data will often possess multifold linear shift-invariant autoregression relationships. This autoregressive structure is useful because it enables missing data samples to be imputed as a linear combination of neighboring samples, and also implies that certain structured matrices formed from the data will have low rank characteristics. The latter observation has enabled a range of powerful structured low-rank matrix recovery techniques for reconstructing sparsely-sampled and/or low-quality data in Fourier imaging modalities like magnetic resonance imaging. In this work, we demonstrate theoretically and empirically that similar modeling principles also apply to sinogram data, and demonstrate how this can be leveraged to restore missing information from real high-resolution X-ray imaging data from an integrated circuit.
层析成像应用于局部正弦图邻域的低秩建模
以前的工作表明,傅里叶成像数据通常具有多重线性移位不变自回归关系。这种自回归结构是有用的,因为它可以将缺失的数据样本作为相邻样本的线性组合进行输入,并且还意味着由数据形成的某些结构化矩阵将具有低秩特征。后一种观察结果使得一系列强大的结构化低秩矩阵恢复技术能够在傅里叶成像模式(如磁共振成像)中重建稀疏采样和/或低质量数据。在这项工作中,我们从理论上和经验上证明了类似的建模原则也适用于正弦图数据,并展示了如何利用这一点从集成电路的真实高分辨率x射线成像数据中恢复缺失信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信