Relevant overlapping subspace clusters on categorical data

Xiao He, Jing Feng, B. Konte, S. T. Mai, C. Plant
{"title":"Relevant overlapping subspace clusters on categorical data","authors":"Xiao He, Jing Feng, B. Konte, S. T. Mai, C. Plant","doi":"10.1145/2623330.2623652","DOIUrl":null,"url":null,"abstract":"Clustering categorical data poses some unique challenges: Due to missing order and spacing among the categories, selecting a suitable similarity measure is a difficult task. Many existing techniques require the user to specify input parameters which are difficult to estimate. Moreover, many techniques are limited to detect clusters in the full-dimensional data space. Only few methods exist for subspace clustering and they produce highly redundant results. Therefore, we propose ROCAT (Relevant Overlapping Subspace Clusters on Categorical Data), a novel technique based on the idea of data compression. Following the Minimum Description Length principle, ROCAT automatically detects the most relevant subspace clusters without any input parameter. The relevance of each cluster is validated by its contribution to compress the data. Optimizing the trade-off between goodness-of-fit and model complexity, ROCAT automatically determines a meaningful number of clusters to represent the data. ROCAT is especially designed to detect subspace clusters on categorical data which may overlap in objects and/or attributes; i.e. objects can be assigned to different clusters in different subspaces and attributes may contribute to different subspaces containing clusters. ROCAT naturally avoids undesired redundancy in clusters and subspaces by allowing overlap only if it improves the compression rate. Extensive experiments demonstrate the effectiveness and efficiency of our approach.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Clustering categorical data poses some unique challenges: Due to missing order and spacing among the categories, selecting a suitable similarity measure is a difficult task. Many existing techniques require the user to specify input parameters which are difficult to estimate. Moreover, many techniques are limited to detect clusters in the full-dimensional data space. Only few methods exist for subspace clustering and they produce highly redundant results. Therefore, we propose ROCAT (Relevant Overlapping Subspace Clusters on Categorical Data), a novel technique based on the idea of data compression. Following the Minimum Description Length principle, ROCAT automatically detects the most relevant subspace clusters without any input parameter. The relevance of each cluster is validated by its contribution to compress the data. Optimizing the trade-off between goodness-of-fit and model complexity, ROCAT automatically determines a meaningful number of clusters to represent the data. ROCAT is especially designed to detect subspace clusters on categorical data which may overlap in objects and/or attributes; i.e. objects can be assigned to different clusters in different subspaces and attributes may contribute to different subspaces containing clusters. ROCAT naturally avoids undesired redundancy in clusters and subspaces by allowing overlap only if it improves the compression rate. Extensive experiments demonstrate the effectiveness and efficiency of our approach.
分类数据的相关重叠子空间聚类
聚类分类数据带来了一些独特的挑战:由于类别之间缺少顺序和间距,选择合适的相似性度量是一项困难的任务。许多现有的技术要求用户指定难以估计的输入参数。此外,许多技术仅限于在全维数据空间中检测聚类。子空间聚类的方法很少,结果冗余度很高。因此,我们提出了一种基于数据压缩思想的分类数据相关重叠子空间聚类(ROCAT)技术。根据最小描述长度原则,ROCAT在不需要任何输入参数的情况下自动检测最相关的子空间集群。每个集群的相关性通过其对压缩数据的贡献来验证。通过优化拟合优度和模型复杂性之间的权衡,ROCAT自动确定有意义的集群数量来表示数据。ROCAT特别设计用于检测分类数据上可能在对象和/或属性上重叠的子空间簇;也就是说,对象可以分配给不同子空间中的不同集群,属性可能有助于包含集群的不同子空间。只有在提高压缩率的情况下,ROCAT才允许重叠,从而避免了簇和子空间中不希望出现的冗余。大量的实验证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信