{"title":"Evolutionary Subspace Clustering: Discovering Structure in Self-expressive Time-series Data","authors":"Abolfazl Hashemi, H. Vikalo","doi":"10.1109/ICASSP.2019.8682405","DOIUrl":null,"url":null,"abstract":"An evolutionary self-expressive model for clustering a collection of evolving data points that lie on a union of low-dimensional evolving subspaces is proposed. A parsimonious representation of data points at each time step is learned via a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account data representation from the preceding time step. The resulting scheme adaptively learns an innovation matrix that captures changes in self-representation of data in consecutive time steps as well as a smoothing parameter reflective of the rate of data evolution. Extensive experiments demonstrate superiority of the proposed framework overs state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"73 1","pages":"3707-3711"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An evolutionary self-expressive model for clustering a collection of evolving data points that lie on a union of low-dimensional evolving subspaces is proposed. A parsimonious representation of data points at each time step is learned via a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account data representation from the preceding time step. The resulting scheme adaptively learns an innovation matrix that captures changes in self-representation of data in consecutive time steps as well as a smoothing parameter reflective of the rate of data evolution. Extensive experiments demonstrate superiority of the proposed framework overs state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes.