Deciding When to Trade Data Freshness for Performance in MongoDB-as-a-Service

Chenhao Huang, Michael J. Cahill, A. Fekete, Uwe Röhm
{"title":"Deciding When to Trade Data Freshness for Performance in MongoDB-as-a-Service","authors":"Chenhao Huang, Michael J. Cahill, A. Fekete, Uwe Röhm","doi":"10.1109/ICDE48307.2020.00207","DOIUrl":null,"url":null,"abstract":"MongoDB is a popular document store that is also available as a cloud-hosted service. MongoDB internally deploys primary-copy asynchronous replication, and it allows clients to vary the Read Preference, so reads can deliberately be directed to secondaries rather than the primary site. Doing this can sometimes improve performance, but the returned data might be stale, whereas the primary always returns the freshest data value. While state-of-practice is for programmers to decide where to direct the reads at application development time, they do not have full understanding then of workload or hardware capacity. It should be better to choose the appropriate Read Preference setting at runtime, as we describe in this paper.We show how a system can detect when the primary copy is saturated in MongoDB-as-a-Service, and use this to choose where reads should be done to improve overall performance. Our approach is aimed at a cloud-consumer; it assumes access to only the limited diagnostic data provided to clients of the hosted service.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"53 1","pages":"1934-1937"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

MongoDB is a popular document store that is also available as a cloud-hosted service. MongoDB internally deploys primary-copy asynchronous replication, and it allows clients to vary the Read Preference, so reads can deliberately be directed to secondaries rather than the primary site. Doing this can sometimes improve performance, but the returned data might be stale, whereas the primary always returns the freshest data value. While state-of-practice is for programmers to decide where to direct the reads at application development time, they do not have full understanding then of workload or hardware capacity. It should be better to choose the appropriate Read Preference setting at runtime, as we describe in this paper.We show how a system can detect when the primary copy is saturated in MongoDB-as-a-Service, and use this to choose where reads should be done to improve overall performance. Our approach is aimed at a cloud-consumer; it assumes access to only the limited diagnostic data provided to clients of the hosted service.
在mongodb即服务中决定何时以数据新鲜度换取性能
MongoDB是一个流行的文档存储,也可以作为云托管服务。MongoDB内部部署主副本异步复制,它允许客户端改变Read Preference,因此读取可以故意定向到备用站点而不是主站点。这样做有时可以提高性能,但是返回的数据可能是过时的,而主服务器总是返回最新的数据值。虽然实践状态是由程序员在应用程序开发时决定在哪里读取,但他们并不完全了解工作负载或硬件容量。最好在运行时选择适当的Read Preference设置,正如我们在本文中所描述的那样。我们将展示系统如何在MongoDB-as-a-Service中检测主副本何时饱和,并使用它来选择应该在何处进行读取以提高整体性能。我们的目标客户是云消费者;它假定只能访问提供给托管服务的客户机的有限诊断数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信