L. Ives, T. Bui, W. Vogler, J. Neilson, V. Peoples, A. Bauer, M. Shephard, H. Tran, M. Beall
{"title":"3D finite element trajectory code with adaptive meshing","authors":"L. Ives, T. Bui, W. Vogler, J. Neilson, V. Peoples, A. Bauer, M. Shephard, H. Tran, M. Beall","doi":"10.1109/ICIMW.2004.1422271","DOIUrl":null,"url":null,"abstract":"A new, finite element, adaptive mesh trajectory code is available for designing electron devices, including electron guns and collectors. The finite element technique provides for more efficient simulation of particles in electromagnetic fields, and the adaptive meshing insures optimal use of computational resources. The adaptive meshing removes responsibility from the user for mesh generation and allows for dramatic simplification of code operation. The code imports geometry from commercial CAD programs and includes an intuitive, user-friendly, graphical user interface and post processor.","PeriodicalId":13627,"journal":{"name":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","volume":"30 1","pages":"675-676"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMW.2004.1422271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A new, finite element, adaptive mesh trajectory code is available for designing electron devices, including electron guns and collectors. The finite element technique provides for more efficient simulation of particles in electromagnetic fields, and the adaptive meshing insures optimal use of computational resources. The adaptive meshing removes responsibility from the user for mesh generation and allows for dramatic simplification of code operation. The code imports geometry from commercial CAD programs and includes an intuitive, user-friendly, graphical user interface and post processor.