{"title":"Magnetic field evolution time-scales in superconducting neutron stars","authors":"M. Gusakov, E. Kantor, D. Ofengeim","doi":"10.1093/mnras/staa3160","DOIUrl":null,"url":null,"abstract":"The self-consistent approach to the magnetic field evolution in neutron star cores, developed recently, is generalised to the case of superfluid and superconducting neutron stars. Applying this approach to the cold matter of neutron star cores composed of neutrons, protons, electrons, and muons we find that, similarly to the case of normal matter, an arbitrary configuration of the magnetic field may result in generation of macroscopic particle velocities, strongly exceeding their diffusive (relative) velocities. This effect substantially accelerates evolution of the magnetic field in the stellar core. An hierarchy of timescales of such evolution at different stages of neutron star life is proposed and discussed. It is argued that the magnetic field in the core cannot be considered as frozen or vanishing and that its temporal evolution should affect the observational properties of neutron stars.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The self-consistent approach to the magnetic field evolution in neutron star cores, developed recently, is generalised to the case of superfluid and superconducting neutron stars. Applying this approach to the cold matter of neutron star cores composed of neutrons, protons, electrons, and muons we find that, similarly to the case of normal matter, an arbitrary configuration of the magnetic field may result in generation of macroscopic particle velocities, strongly exceeding their diffusive (relative) velocities. This effect substantially accelerates evolution of the magnetic field in the stellar core. An hierarchy of timescales of such evolution at different stages of neutron star life is proposed and discussed. It is argued that the magnetic field in the core cannot be considered as frozen or vanishing and that its temporal evolution should affect the observational properties of neutron stars.