Aff-Wild: Valence and Arousal ‘In-the-Wild’ Challenge

S. Zafeiriou, D. Kollias, M. Nicolaou, A. Papaioannou, Guoying Zhao, I. Kotsia
{"title":"Aff-Wild: Valence and Arousal ‘In-the-Wild’ Challenge","authors":"S. Zafeiriou, D. Kollias, M. Nicolaou, A. Papaioannou, Guoying Zhao, I. Kotsia","doi":"10.1109/CVPRW.2017.248","DOIUrl":null,"url":null,"abstract":"The Affect-in-the-Wild (Aff-Wild) Challenge proposes a new comprehensive benchmark for assessing the performance of facial affect/behaviour analysis/understanding 'in-the-wild'. The Aff-wild benchmark contains about 300 videos (over 2,000 minutes of data) annotated with regards to valence and arousal, all captured 'in-the-wild' (the main source being Youtube videos). The paper presents the database description, the experimental set up, the baseline method used for the Challenge and finally the summary of the performance of the different methods submitted to the Affect-in-the-Wild Challenge for Valence and Arousal estimation. The challenge demonstrates that meticulously designed deep neural networks can achieve very good performance when trained with in-the-wild data.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"120 1","pages":"1980-1987"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"275","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 275

Abstract

The Affect-in-the-Wild (Aff-Wild) Challenge proposes a new comprehensive benchmark for assessing the performance of facial affect/behaviour analysis/understanding 'in-the-wild'. The Aff-wild benchmark contains about 300 videos (over 2,000 minutes of data) annotated with regards to valence and arousal, all captured 'in-the-wild' (the main source being Youtube videos). The paper presents the database description, the experimental set up, the baseline method used for the Challenge and finally the summary of the performance of the different methods submitted to the Affect-in-the-Wild Challenge for Valence and Arousal estimation. The challenge demonstrates that meticulously designed deep neural networks can achieve very good performance when trained with in-the-wild data.
野性:价态和唤醒“野性”挑战
“野外情感挑战”提出了一个新的综合基准,用于评估面部情感/行为分析/理解“野外”的表现。off -wild基准包含大约300个视频(超过2000分钟的数据),这些视频都是“in-the-wild”捕获的(主要来源是Youtube视频)。本文介绍了数据库描述、实验设置、挑战中使用的基线方法,最后总结了在价性和唤醒估计中提交的不同方法的性能。该挑战表明,精心设计的深度神经网络在使用野外数据进行训练时可以获得非常好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信