Impact of Low Cost Proppant and Fluid Systems in Hydraulic Fracturing of Unconventional Wells

Bettina Cheung, Scott Hilling, Sean Paul Brierley
{"title":"Impact of Low Cost Proppant and Fluid Systems in Hydraulic Fracturing of Unconventional Wells","authors":"Bettina Cheung, Scott Hilling, Sean Paul Brierley","doi":"10.2118/193333-MS","DOIUrl":null,"url":null,"abstract":"\n As the industry advances on horizontal drilling and slim hole design, well completion and specifically hydraulic fracture stimulation remains the most expensive part of the well construction process in Unconventionals.\n Proppant and fluid make up a significant portion of the stimulation cost of a well, it is therefore a key lever in cost reduction. This submission will examine the transition from Conventional to Unconventional stimulation designs with respect to technical and economic factors that drive fluid and proppant optimization.\n The authors will then focus on the industry journey in multiple step change transitions from high viscosity fluid system with high strength premium proppants towards low viscosity fluid system and lower strength natural proppant. In each case, technical justifications based on theory, laboratory testing, or field trial data from Shell unconventional basins will be discussed. The authors will also briefly review several strategic approaches in proppant and fluid sourcing from the logistics perspective. Relevant cost data will also be used to reflect the overall impact of the evolution.\n This paper reveals that significant cost reduction can be achieved by right sizing fracture conductivity through reduction on premium high strength proppants and shifting towards a low viscosity system, as well as leveraging appropriate supply chain strategy.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193333-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As the industry advances on horizontal drilling and slim hole design, well completion and specifically hydraulic fracture stimulation remains the most expensive part of the well construction process in Unconventionals. Proppant and fluid make up a significant portion of the stimulation cost of a well, it is therefore a key lever in cost reduction. This submission will examine the transition from Conventional to Unconventional stimulation designs with respect to technical and economic factors that drive fluid and proppant optimization. The authors will then focus on the industry journey in multiple step change transitions from high viscosity fluid system with high strength premium proppants towards low viscosity fluid system and lower strength natural proppant. In each case, technical justifications based on theory, laboratory testing, or field trial data from Shell unconventional basins will be discussed. The authors will also briefly review several strategic approaches in proppant and fluid sourcing from the logistics perspective. Relevant cost data will also be used to reflect the overall impact of the evolution. This paper reveals that significant cost reduction can be achieved by right sizing fracture conductivity through reduction on premium high strength proppants and shifting towards a low viscosity system, as well as leveraging appropriate supply chain strategy.
低成本支撑剂和流体系统对非常规井水力压裂的影响
随着行业在水平钻井和小井眼设计方面的进步,完井,特别是水力压裂增产仍然是非常规油气钻井过程中最昂贵的部分。支撑剂和压裂液占增产成本的很大一部分,因此是降低成本的关键手段。该报告将从技术和经济因素方面考察从常规到非常规增产设计的转变,从而推动流体和支撑剂的优化。然后,作者将重点介绍从具有高强度优质支撑剂的高粘度流体体系到低粘度流体体系和低强度天然支撑剂的多阶段变化的行业历程。在每种情况下,将讨论基于理论、实验室测试或壳牌非常规盆地现场试验数据的技术论证。作者还将从物流的角度简要回顾支撑剂和流体采购的几种战略方法。有关的成本数据也将用于反映演变的总体影响。本文表明,通过减少优质高强度支撑剂,转向低粘度体系,以及利用适当的供应链策略,正确调整裂缝导流能力,可以显著降低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信