{"title":"Impact of Low Cost Proppant and Fluid Systems in Hydraulic Fracturing of Unconventional Wells","authors":"Bettina Cheung, Scott Hilling, Sean Paul Brierley","doi":"10.2118/193333-MS","DOIUrl":null,"url":null,"abstract":"\n As the industry advances on horizontal drilling and slim hole design, well completion and specifically hydraulic fracture stimulation remains the most expensive part of the well construction process in Unconventionals.\n Proppant and fluid make up a significant portion of the stimulation cost of a well, it is therefore a key lever in cost reduction. This submission will examine the transition from Conventional to Unconventional stimulation designs with respect to technical and economic factors that drive fluid and proppant optimization.\n The authors will then focus on the industry journey in multiple step change transitions from high viscosity fluid system with high strength premium proppants towards low viscosity fluid system and lower strength natural proppant. In each case, technical justifications based on theory, laboratory testing, or field trial data from Shell unconventional basins will be discussed. The authors will also briefly review several strategic approaches in proppant and fluid sourcing from the logistics perspective. Relevant cost data will also be used to reflect the overall impact of the evolution.\n This paper reveals that significant cost reduction can be achieved by right sizing fracture conductivity through reduction on premium high strength proppants and shifting towards a low viscosity system, as well as leveraging appropriate supply chain strategy.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193333-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
As the industry advances on horizontal drilling and slim hole design, well completion and specifically hydraulic fracture stimulation remains the most expensive part of the well construction process in Unconventionals.
Proppant and fluid make up a significant portion of the stimulation cost of a well, it is therefore a key lever in cost reduction. This submission will examine the transition from Conventional to Unconventional stimulation designs with respect to technical and economic factors that drive fluid and proppant optimization.
The authors will then focus on the industry journey in multiple step change transitions from high viscosity fluid system with high strength premium proppants towards low viscosity fluid system and lower strength natural proppant. In each case, technical justifications based on theory, laboratory testing, or field trial data from Shell unconventional basins will be discussed. The authors will also briefly review several strategic approaches in proppant and fluid sourcing from the logistics perspective. Relevant cost data will also be used to reflect the overall impact of the evolution.
This paper reveals that significant cost reduction can be achieved by right sizing fracture conductivity through reduction on premium high strength proppants and shifting towards a low viscosity system, as well as leveraging appropriate supply chain strategy.