{"title":"Improving visual question answering with pre-trained language modeling","authors":"Yue Wu, Huiyi Gao, Lei Chen","doi":"10.1117/12.2574575","DOIUrl":null,"url":null,"abstract":"Visual question answering is a task of significant importance for research in artificial intelligence. However, most studies often use simple gated recurrent units (GRU) to extract question or image high-level features, and it is not enough for achieving a better performance. In this paper, two improvements are proposed to a general VQA model based on the dynamic memory network (DMN). We initialize the question module of our model using the pre-trained language model. On the other hand, we utilize a new module to replace GRU in the input fusion layer of the input module. Experimental results demonstrate the effectiveness of our method with the improvement of 1.52% on the Visual Question Answering V2 dataset over baseline.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"18 1","pages":"115260D - 115260D-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2574575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Visual question answering is a task of significant importance for research in artificial intelligence. However, most studies often use simple gated recurrent units (GRU) to extract question or image high-level features, and it is not enough for achieving a better performance. In this paper, two improvements are proposed to a general VQA model based on the dynamic memory network (DMN). We initialize the question module of our model using the pre-trained language model. On the other hand, we utilize a new module to replace GRU in the input fusion layer of the input module. Experimental results demonstrate the effectiveness of our method with the improvement of 1.52% on the Visual Question Answering V2 dataset over baseline.