Non-Linear Interactions and Exchange Rate Prediction: Empirical Evidence Using Support Vector Regression

Q3 Mathematics
Yaohao Peng, P. Albuquerque
{"title":"Non-Linear Interactions and Exchange Rate Prediction: Empirical Evidence Using Support Vector Regression","authors":"Yaohao Peng, P. Albuquerque","doi":"10.1080/1350486X.2019.1593866","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper analysed the prediction of the spot exchange rate of 10 currency pairs using support vector regression (SVR) based on a fundamentalist model composed of 13 explanatory variables. Different structures of non-linear dependence introduced by nine different Kernel functions were tested and the predictions were compared to the Random Walk benchmark. We checked the explanatory power gain of SVR models over the Random Walk by applying White’s Reality Check Test. The results showed that the majority of SVR models achieved better out-of-sample performance than the Random Walk, but in overall they failed to achieve statistical significance of predictive superiority. Furthermore, we observed that non-mainstream Kernel functions performed better than the ones commonly used in the machine-learning literature, a finding that can provide new insights regarding machine-learning methods applications and the predictability of exchange rates using non-linear interactions between the predictors.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"500 1","pages":"100 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2019.1593866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 15

Abstract

ABSTRACT This paper analysed the prediction of the spot exchange rate of 10 currency pairs using support vector regression (SVR) based on a fundamentalist model composed of 13 explanatory variables. Different structures of non-linear dependence introduced by nine different Kernel functions were tested and the predictions were compared to the Random Walk benchmark. We checked the explanatory power gain of SVR models over the Random Walk by applying White’s Reality Check Test. The results showed that the majority of SVR models achieved better out-of-sample performance than the Random Walk, but in overall they failed to achieve statistical significance of predictive superiority. Furthermore, we observed that non-mainstream Kernel functions performed better than the ones commonly used in the machine-learning literature, a finding that can provide new insights regarding machine-learning methods applications and the predictability of exchange rates using non-linear interactions between the predictors.
非线性相互作用与汇率预测:使用支持向量回归的经验证据
摘要本文基于由13个解释变量组成的原教旨主义模型,利用支持向量回归(SVR)对10种货币对的即期汇率进行预测分析。测试了由9种不同核函数引入的非线性依赖的不同结构,并将预测结果与Random Walk基准进行了比较。我们通过应用White的现实检验检验了SVR模型在随机漫步中的解释力增益。结果表明,大多数SVR模型的样本外性能优于Random Walk,但总体上未能达到预测优势的统计显著性。此外,我们观察到非主流核函数比机器学习文献中常用的核函数表现得更好,这一发现可以为机器学习方法的应用和使用预测器之间的非线性相互作用的汇率可预测性提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信