Microclimatic Variation in Miri Region (NW Borneo): Inference from Rainfall and Temperature Trends, Isotopic Signature and Air Mass Movement

IF 0.7 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Fiona Bassy William, P. M. Viswanathan, Anshuman Mishra
{"title":"Microclimatic Variation in Miri Region (NW Borneo): Inference from Rainfall and Temperature Trends, Isotopic Signature and Air Mass Movement","authors":"Fiona Bassy William, P. M. Viswanathan, Anshuman Mishra","doi":"10.3233/jcc230024","DOIUrl":null,"url":null,"abstract":"Trend analysis is frequently utilised to identify the changes in meteorological and hydrologic time series data, such as rainfall and temperature. The variations in the intensity, rainfall pattern and temperature have gradually changed globally. Hence, in this study, an attempt was made to analyse the decadal rainfall and surface air temperature data to understand the microclimatic variations in the Miri coastal region of NW Borneo. A data series of records for daily total rainfall amount and daily surface temperature of 11 years from 2010 to 2021 was studied and analysed. In addition, representative rainwater and groundwater samples were collected and analysed for hydrochemical parameters and oxygen and hydrogen isotopes. A detailed literature review was carried out on rainfall patterns in Malaysia, which was used for the comparative study. Interpretation of results shows that the northeast monsoon (NEM) contributed a higher total rainfall rate with lower daily mean surface air temperature over the years compared to the southwest monsoon (SWM). The recorded data for rainfall amounts in SWM for the month of May, July, August and September were higher, particularly for the years 2010 and 2020. During NEM, a higher rainfall amount was recorded in the month of January for several years. February month has always been among the driest month in NEM, and September has been the wettest month throughout the year during SWM. The isotopic values of rainwater indicate a similar moisture source to the regional precipitation trend. Groundwater isotopes reveal the low water-rock ratio of retrograde exchange between water and primary silicate minerals in the aquifer. The moisture source of the precipitation was contributed from both oceanic and continent, affecting the rainfall intensity in this region. This study is a crucial outcome to determine the potential impacts of microclimatic variations on the rainfall patterns in the Miri coastal region.","PeriodicalId":43177,"journal":{"name":"Journal of Climate Change","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcc230024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Trend analysis is frequently utilised to identify the changes in meteorological and hydrologic time series data, such as rainfall and temperature. The variations in the intensity, rainfall pattern and temperature have gradually changed globally. Hence, in this study, an attempt was made to analyse the decadal rainfall and surface air temperature data to understand the microclimatic variations in the Miri coastal region of NW Borneo. A data series of records for daily total rainfall amount and daily surface temperature of 11 years from 2010 to 2021 was studied and analysed. In addition, representative rainwater and groundwater samples were collected and analysed for hydrochemical parameters and oxygen and hydrogen isotopes. A detailed literature review was carried out on rainfall patterns in Malaysia, which was used for the comparative study. Interpretation of results shows that the northeast monsoon (NEM) contributed a higher total rainfall rate with lower daily mean surface air temperature over the years compared to the southwest monsoon (SWM). The recorded data for rainfall amounts in SWM for the month of May, July, August and September were higher, particularly for the years 2010 and 2020. During NEM, a higher rainfall amount was recorded in the month of January for several years. February month has always been among the driest month in NEM, and September has been the wettest month throughout the year during SWM. The isotopic values of rainwater indicate a similar moisture source to the regional precipitation trend. Groundwater isotopes reveal the low water-rock ratio of retrograde exchange between water and primary silicate minerals in the aquifer. The moisture source of the precipitation was contributed from both oceanic and continent, affecting the rainfall intensity in this region. This study is a crucial outcome to determine the potential impacts of microclimatic variations on the rainfall patterns in the Miri coastal region.
Miri地区(西北婆罗洲)的小气候变化:来自降雨和温度趋势、同位素特征和气团运动的推断
趋势分析经常用于确定气象和水文时间序列数据的变化,例如降雨和温度。在全球范围内,强度、降雨模式和温度的变化逐渐发生变化。因此,本研究试图通过分析年代际降水和地表气温数据来了解西北婆罗洲米里沿海地区的小气候变化。对2010 ~ 2021年11年的日总降雨量和日地表温度记录进行了研究和分析。此外,还收集了具有代表性的雨水和地下水样品,分析了水化学参数和氧、氢同位素。对马来西亚的降雨模式进行了详细的文献综述,用于比较研究。结果表明,与西南季风相比,东北季风(NEM)多年来贡献了更高的总降雨量和更低的日平均地面气温。5月、7月、8月和9月的SWM雨量记录较高,特别是2010年和2020年。在新寒潮期间,1月份的降雨量连续数年较高。二月一直是新气象中最干燥的月份之一,而九月一直是西南气象期间全年最潮湿的月份。雨水的同位素值显示了与区域降水趋势相似的水汽来源。地下水同位素揭示了含水层中水与原生硅酸盐矿物逆行交换的低水岩比。降水的水汽源由海洋和大陆共同贡献,影响了该地区的降水强度。该研究是确定小气候变化对滨海地区降雨模式潜在影响的重要成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Climate Change
Journal of Climate Change METEOROLOGY & ATMOSPHERIC SCIENCES-
自引率
16.70%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信