Y. Shimizu, Kana Shirai, Yuta Kojima, Daiki Mitsuda, Mahiro Inoue
{"title":"Survival energy models for mortality prediction and future prospects","authors":"Y. Shimizu, Kana Shirai, Yuta Kojima, Daiki Mitsuda, Mahiro Inoue","doi":"10.1017/asb.2023.10","DOIUrl":null,"url":null,"abstract":"Abstract The survival energy model (SEM) is a recently introduced novel approach to mortality prediction, which offers a cohort-wise distribution function of the time of death as the first hitting time of a “survival energy” diffusion process to zero. In this study, we propose a novel SEM that can serve as a suitable candidate in the family of prediction models. We also proposed a method to improve the prediction in an earlier work. We further examine the practical advantages of SEM over existing mortality models.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"105 1","pages":"377 - 391"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.10","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The survival energy model (SEM) is a recently introduced novel approach to mortality prediction, which offers a cohort-wise distribution function of the time of death as the first hitting time of a “survival energy” diffusion process to zero. In this study, we propose a novel SEM that can serve as a suitable candidate in the family of prediction models. We also proposed a method to improve the prediction in an earlier work. We further examine the practical advantages of SEM over existing mortality models.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.