Khue-Dung Dang, Louise M Ryan, Richard J Cook, Tugba Akkaya Hocagil, Sandra W Jacobson, Joseph L Jacobson
{"title":"Bayesian outcome selection modeling.","authors":"Khue-Dung Dang, Louise M Ryan, Richard J Cook, Tugba Akkaya Hocagil, Sandra W Jacobson, Joseph L Jacobson","doi":"10.1002/sta4.568","DOIUrl":null,"url":null,"abstract":"<p><p>In psychiatric and social epidemiology studies, it is common to measure multiple different outcomes using a comprehensive battery of tests thought to be related to an underlying construct of interest. In the research that motivates our work, researchers wanted to assess the impact of in utero alcohol exposure on child cognition and neuropsychological development, which are evaluated using a range of different psychometric tests. Statistical analysis of the resulting multiple outcomes data can be challenging, because the outcomes measured on the same individual are not independent. Moreover, it is unclear, a priori, which outcomes are impacted by the exposure under study. While researchers will typically have some hypotheses about which outcomes are important, a framework is needed to help identify outcomes that are sensitive to the exposure and to quantify the associated treatment or exposure effects of interest. We propose such a framework using a modification of stochastic search variable selection, a popular Bayesian variable selection model and use it to quantify an overall effect of the exposure on the affected outcomes. The performance of the method is investigated empirically and an illustration is given through application using data from our motivating study.</p>","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In psychiatric and social epidemiology studies, it is common to measure multiple different outcomes using a comprehensive battery of tests thought to be related to an underlying construct of interest. In the research that motivates our work, researchers wanted to assess the impact of in utero alcohol exposure on child cognition and neuropsychological development, which are evaluated using a range of different psychometric tests. Statistical analysis of the resulting multiple outcomes data can be challenging, because the outcomes measured on the same individual are not independent. Moreover, it is unclear, a priori, which outcomes are impacted by the exposure under study. While researchers will typically have some hypotheses about which outcomes are important, a framework is needed to help identify outcomes that are sensitive to the exposure and to quantify the associated treatment or exposure effects of interest. We propose such a framework using a modification of stochastic search variable selection, a popular Bayesian variable selection model and use it to quantify an overall effect of the exposure on the affected outcomes. The performance of the method is investigated empirically and an illustration is given through application using data from our motivating study.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.