EASiER: encryption-based access control in social networks with efficient revocation

Sonia Jahid, Prateek Mittal, N. Borisov
{"title":"EASiER: encryption-based access control in social networks with efficient revocation","authors":"Sonia Jahid, Prateek Mittal, N. Borisov","doi":"10.1145/1966913.1966970","DOIUrl":null,"url":null,"abstract":"A promising approach to mitigate the privacy risks in Online Social Networks (OSNs) is to shift access control enforcement from the OSN provider to the user by means of encryption. However, this creates the challenge of key management to support complex policies involved in OSNs and dynamic groups. To address this, we propose EASiER, an architecture that supports fine-grained access control policies and dynamic group membership by using attribute-based encryption. A key and novel feature of our architecture, however, is that it is possible to remove access from a user without issuing new keys to other users or re-encrypting existing ciphertexts. We achieve this by creating a proxy that participates in the decryption process and enforces revocation constraints. The proxy is minimally trusted and cannot decrypt ciphertexts or provide access to previously revoked users. We describe EASiER architecture and construction, provide performance evaluation, and prototype application of our approach on Facebook.","PeriodicalId":72308,"journal":{"name":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"360","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1966913.1966970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 360

Abstract

A promising approach to mitigate the privacy risks in Online Social Networks (OSNs) is to shift access control enforcement from the OSN provider to the user by means of encryption. However, this creates the challenge of key management to support complex policies involved in OSNs and dynamic groups. To address this, we propose EASiER, an architecture that supports fine-grained access control policies and dynamic group membership by using attribute-based encryption. A key and novel feature of our architecture, however, is that it is possible to remove access from a user without issuing new keys to other users or re-encrypting existing ciphertexts. We achieve this by creating a proxy that participates in the decryption process and enforces revocation constraints. The proxy is minimally trusted and cannot decrypt ciphertexts or provide access to previously revoked users. We describe EASiER architecture and construction, provide performance evaluation, and prototype application of our approach on Facebook.
更容易:基于加密的访问控制与有效撤销的社交网络
缓解在线社交网络(OSN)中隐私风险的一种很有前途的方法是通过加密将访问控制从OSN提供商转移到用户。但是,这给密钥管理带来了挑战,无法支持osn和动态组中涉及的复杂策略。为了解决这个问题,我们提出了easy,这是一个通过使用基于属性的加密来支持细粒度访问控制策略和动态组成员关系的体系结构。然而,我们架构的一个关键和新颖的特性是,可以在不向其他用户颁发新密钥或重新加密现有密文的情况下,从用户中删除访问权限。我们通过创建一个代理来实现这一点,该代理参与解密过程并执行撤销约束。代理的信任度最低,不能解密密文,也不能向先前被撤销的用户提供访问权限。我们描述了更简单的架构和构造,提供了性能评估,并在Facebook上提供了我们的方法的原型应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信