Equation discovery from data: promise and pitfalls, from rabbits to Mars

Q4 Mathematics
Graham Donovan, Qing Su
{"title":"Equation discovery from data: promise and pitfalls, from rabbits to Mars","authors":"Graham Donovan, Qing Su","doi":"10.53733/216","DOIUrl":null,"url":null,"abstract":"The problem of equation discovery seeks to reconstruct the underlying dynamics of a time-varying system from observations of the system, and moreover to do so in an instructive way such that we may understand these underlying dynamics from the reconstruction.This article illustrates one type of modern equation discovery method (sparse identification of nonlinear dynamics, or SINDy) in the context of two classic problems. The presentation is in a tutorial style intended to be accessible to students, and could form a useful module in undergraduate or graduate courses in modelling, data analysis, or numerical methods. In this style we explore the strengths and limitations of these methods. We also demonstrate, through use of a carefully constructed example, a new result about the relationship between the reconstructed and true models when a na\\\"ive polynomial basis is used.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of equation discovery seeks to reconstruct the underlying dynamics of a time-varying system from observations of the system, and moreover to do so in an instructive way such that we may understand these underlying dynamics from the reconstruction.This article illustrates one type of modern equation discovery method (sparse identification of nonlinear dynamics, or SINDy) in the context of two classic problems. The presentation is in a tutorial style intended to be accessible to students, and could form a useful module in undergraduate or graduate courses in modelling, data analysis, or numerical methods. In this style we explore the strengths and limitations of these methods. We also demonstrate, through use of a carefully constructed example, a new result about the relationship between the reconstructed and true models when a na\"ive polynomial basis is used.
从数据中发现方程:从兔子到火星,希望与陷阱
方程发现问题试图从系统的观察中重建时变系统的潜在动力学,而且以一种有指导意义的方式这样做,这样我们就可以从重建中理解这些潜在的动力学。本文在两个经典问题的背景下阐述了一类现代方程发现方法(非线性动力学的稀疏识别,或SINDy)。该报告以教程的形式呈现,旨在让学生能够访问,并且可以在建模,数据分析或数值方法的本科或研究生课程中形成有用的模块。在这种风格中,我们探讨了这些方法的优点和局限性。我们还通过一个精心构造的例子,证明了当使用一个无多项式基时,重建模型与真实模型之间关系的一个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信