An upper bound on the two-arms exponent for critical percolation on Zd

IF 1.5 Q2 PHYSICS, MATHEMATICAL
J. Berg, Diederik van Engelenburg
{"title":"An upper bound on the two-arms exponent for critical percolation on Zd","authors":"J. Berg, Diederik van Engelenburg","doi":"10.1214/21-aihp1153","DOIUrl":null,"url":null,"abstract":"Consider critical site percolation on $\\mathbb{Z}^d$ with $d \\geq 2$. Cerf (2015) pointed out that from classical work by Aizenman, Kesten and Newman (1987) and Gandolfi, Grimmett and Russo (1988) one can obtain that the two-arms exponent is at least $1/2$. The paper by Cerf slightly improves that lower bound. \nExcept for $d=2$ and for high $d$, no upper bound for this exponent seems to be known in the literature so far (not even implicity). We show that the distance-$n$ two-arms probability is at least $c n^{-(d^2 + 4 d -2)}$ (with $c >0$ a constant which depends on $d$), thus giving an upper bound $d^2 + 4 d -2$ for the above mentioned exponent.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Consider critical site percolation on $\mathbb{Z}^d$ with $d \geq 2$. Cerf (2015) pointed out that from classical work by Aizenman, Kesten and Newman (1987) and Gandolfi, Grimmett and Russo (1988) one can obtain that the two-arms exponent is at least $1/2$. The paper by Cerf slightly improves that lower bound. Except for $d=2$ and for high $d$, no upper bound for this exponent seems to be known in the literature so far (not even implicity). We show that the distance-$n$ two-arms probability is at least $c n^{-(d^2 + 4 d -2)}$ (with $c >0$ a constant which depends on $d$), thus giving an upper bound $d^2 + 4 d -2$ for the above mentioned exponent.
Zd上临界渗流双臂指数的上界
用$d \geq 2$考虑$\mathbb{Z}^d$上的关键站点渗透。Cerf(2015)指出,从Aizenman, Kesten and Newman(1987)和Gandolfi, Grimmett and Russo(1988)的经典作品中可以得到双臂指数至少为$1/2$。Cerf的论文稍微改进了这个下界。除了$d=2$和高的$d$,到目前为止,在文献中似乎没有这个指数的上界(甚至没有隐含)。我们表明,距离- $n$双臂概率至少为$c n^{-(d^2 + 4 d -2)}$ ($c >0$是一个取决于$d$的常数),从而给出上述指数的上界$d^2 + 4 d -2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信