Deep deformable Q-Network: an extension of deep Q-Network

Beibei Jin, Jianing Yang, Xiangsheng Huang, D. Khan
{"title":"Deep deformable Q-Network: an extension of deep Q-Network","authors":"Beibei Jin, Jianing Yang, Xiangsheng Huang, D. Khan","doi":"10.1145/3106426.3109426","DOIUrl":null,"url":null,"abstract":"The performance of Deep Reinforcement Learning (DRL) algorithms is usually constrained by instability and variability. In this work, we present an extension of Deep Q-Network (DQN) called Deep Deformable Q-Network which is based on deformable convolution mechanisms. The new algorithm can readily be built on existing models and can be easily trained end-to-end by standard back-propagation. Extensive experiments on the Atari games validate the feasibility and effectiveness of the proposed Deep Deformable Q-Network.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3109426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The performance of Deep Reinforcement Learning (DRL) algorithms is usually constrained by instability and variability. In this work, we present an extension of Deep Q-Network (DQN) called Deep Deformable Q-Network which is based on deformable convolution mechanisms. The new algorithm can readily be built on existing models and can be easily trained end-to-end by standard back-propagation. Extensive experiments on the Atari games validate the feasibility and effectiveness of the proposed Deep Deformable Q-Network.
深度可变形Q-Network:深度Q-Network的扩展
深度强化学习(DRL)算法的性能通常受到不稳定性和可变性的限制。在这项工作中,我们提出了深度q网络(DQN)的扩展,称为深度可变形q网络,它基于可变形卷积机制。新算法可以很容易地建立在现有模型上,并且可以很容易地通过标准反向传播进行端到端训练。在Atari游戏上的大量实验验证了所提出的深度可变形q网络的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信