A New Artificial Immune System Based on Continuous Learning for Pattern Recognition

S. F. Souza, F. Lima, F. R. Chavarette
{"title":"A New Artificial Immune System Based on Continuous Learning for Pattern Recognition","authors":"S. F. Souza, F. Lima, F. R. Chavarette","doi":"10.22456/2175-2745.102061","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for pattern recognition based on continuous training inspired by the biological immune system operation. The main objective of this paper is to present a method capable of continually learn, i.e., being able to address new types of patterns without the need to restart the training process (artificial immune system with incremental learning). It is a useful method for solving problems involving a permanent knowledge extraction, e.g., 3D facial expression recognition, whose quality of the solutions is strongly dependent on a continuous training process. In this context, two artificial immune algorithms are employed: (1) the negative selection algorithm, which is responsible for the pattern recognition process and (2) the clonal selection algorithm, which is responsible for the learning process. The main application of this method is in assisting in decision-making on problems related to pattern recognition process. To evaluate and validate the efficiency of this method, the system has been tested on handwritten character recognition, which is a classic problem in the literature. The results show efficiency, accuracy and robustness of the proposed methodology.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.102061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel approach for pattern recognition based on continuous training inspired by the biological immune system operation. The main objective of this paper is to present a method capable of continually learn, i.e., being able to address new types of patterns without the need to restart the training process (artificial immune system with incremental learning). It is a useful method for solving problems involving a permanent knowledge extraction, e.g., 3D facial expression recognition, whose quality of the solutions is strongly dependent on a continuous training process. In this context, two artificial immune algorithms are employed: (1) the negative selection algorithm, which is responsible for the pattern recognition process and (2) the clonal selection algorithm, which is responsible for the learning process. The main application of this method is in assisting in decision-making on problems related to pattern recognition process. To evaluate and validate the efficiency of this method, the system has been tested on handwritten character recognition, which is a classic problem in the literature. The results show efficiency, accuracy and robustness of the proposed methodology.
一种基于持续学习的模式识别人工免疫系统
本文提出了一种受生物免疫系统运作启发的基于连续训练的模式识别新方法。本文的主要目标是提出一种能够持续学习的方法,即能够在不需要重新启动训练过程的情况下处理新类型的模式(具有增量学习的人工免疫系统)。它是解决涉及永久知识提取的问题的有用方法,例如,3D面部表情识别,其解决方案的质量强烈依赖于持续的训练过程。在这种情况下,采用了两种人工免疫算法:(1)负选择算法,负责模式识别过程;(2)克隆选择算法,负责学习过程。该方法的主要应用是在模式识别过程中辅助决策。为了评估和验证该方法的有效性,对文献中的经典问题手写体字符识别进行了测试。结果表明,该方法具有较高的效率、准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信