Supplement to ``Weak domination principle''

Masanori Kishi
{"title":"Supplement to ``Weak domination principle''","authors":"Masanori Kishi","doi":"10.32917/HMJ/1206139320","DOIUrl":null,"url":null,"abstract":"Lemma 4 in the previous paper \"weak domination principle\" in the volume 28 of this journal is true without the assumption on non-degeneracy. Namely, if G is a positive kernel on Ω = {xu x2, X3} satisfying the weak domination principle, then it satisfies the ordinary domination principle or the inverse domination principle. To see this, let 7Ί2 = 0. Since ϊ23 = 0 implies 7*31 = 0, it is sufficient to notice the imcompatibility of ϊ23 > 0 and Tsi < 0. Thus the main theorems in the paper are to be stated without assuming non-degeneracy as follows.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"58 1","pages":"147-147"},"PeriodicalIF":0.0000,"publicationDate":"1965-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206139320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lemma 4 in the previous paper "weak domination principle" in the volume 28 of this journal is true without the assumption on non-degeneracy. Namely, if G is a positive kernel on Ω = {xu x2, X3} satisfying the weak domination principle, then it satisfies the ordinary domination principle or the inverse domination principle. To see this, let 7Ί2 = 0. Since ϊ23 = 0 implies 7*31 = 0, it is sufficient to notice the imcompatibility of ϊ23 > 0 and Tsi < 0. Thus the main theorems in the paper are to be stated without assuming non-degeneracy as follows.
对“弱支配原则”的补充
本刊第28卷的前文“弱支配原理”的引理4在没有非简并假设的情况下是成立的。即,如果G在Ω = {xu x2, X3}上是满足弱支配原则的正核,则它满足一般支配原则或逆支配原则。设7Ί2 = 0。因为ϊ23 = 0意味着7*31 = 0,所以只要注意到ϊ23 > 0与Tsi < 0的不兼容性就足够了。因此,本文的主要定理将在不假设非简并性的情况下表述如下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信