“A spectroscopic picture paints 1000 words” mapping iron speciation in brain tissue with “full spectrum per pixel” X-ray absorption near-edge structure spectroscopy

Mark J. Hackett , Gaewyn Ellison , Ashley Hollings , Frederick Colbourne , Martin D. de Jonge , Daryl L. Howard
{"title":"“A spectroscopic picture paints 1000 words” mapping iron speciation in brain tissue with “full spectrum per pixel” X-ray absorption near-edge structure spectroscopy","authors":"Mark J. Hackett ,&nbsp;Gaewyn Ellison ,&nbsp;Ashley Hollings ,&nbsp;Frederick Colbourne ,&nbsp;Martin D. de Jonge ,&nbsp;Daryl L. Howard","doi":"10.1016/j.clispe.2021.100017","DOIUrl":null,"url":null,"abstract":"<div><p>Coordination chemistry enables a variety of vital functions in biological systems; however, characterising the chemical form of metal ions in cells and tissue is notoriously difficult. One technique that is gaining substantial momentum in this research area is X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectrum can be a rich source of information with respect to the coordination environment of metal ions. Further, XANES spectroscopy is compatible with microscopy mapping protocols as the spectra are recorded across a relatively narrow range of data points (typically 50–100). Although the potential of XANES spectroscopy to study metal ion coordination chemistry has long been known, data collection speed has only relatively recently reached the state in which maps can be collected with a full spectrum per pixel. The realisation of this capability now places XANES spectroscopic mapping among a suite of other spectroscopic imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, which are available to characterise biochemical composition, in situ within cells and tissue. Herein, we report a proof-of-concept application of XANES spectroscopic mapping to begin exploration of Fe speciation in brain tissue, which demonstrates the potential of this method for the biomedical sciences, and identifies important areas for consideration with respect to future protocol developments.</p></div>","PeriodicalId":100277,"journal":{"name":"Clinical Spectroscopy","volume":"3 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666054721000120/pdfft?md5=986b6a20eac4d15e8d93e06400228e1c&pid=1-s2.0-S2666054721000120-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666054721000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Coordination chemistry enables a variety of vital functions in biological systems; however, characterising the chemical form of metal ions in cells and tissue is notoriously difficult. One technique that is gaining substantial momentum in this research area is X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectrum can be a rich source of information with respect to the coordination environment of metal ions. Further, XANES spectroscopy is compatible with microscopy mapping protocols as the spectra are recorded across a relatively narrow range of data points (typically 50–100). Although the potential of XANES spectroscopy to study metal ion coordination chemistry has long been known, data collection speed has only relatively recently reached the state in which maps can be collected with a full spectrum per pixel. The realisation of this capability now places XANES spectroscopic mapping among a suite of other spectroscopic imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, which are available to characterise biochemical composition, in situ within cells and tissue. Herein, we report a proof-of-concept application of XANES spectroscopic mapping to begin exploration of Fe speciation in brain tissue, which demonstrates the potential of this method for the biomedical sciences, and identifies important areas for consideration with respect to future protocol developments.

“一张光谱图描绘1000字”用“每像素全光谱”x射线吸收近边缘结构光谱学绘制脑组织中的铁形态
配位化学使生物系统中的各种重要功能成为可能;然而,描述细胞和组织中金属离子的化学形态是出了名的困难。x射线吸收近边缘结构(XANES)光谱技术在这一研究领域获得了长足的发展。XANES光谱可以成为关于金属离子配位环境的丰富信息来源。此外,XANES光谱与显微镜制图协议兼容,因为光谱记录在相对较窄的数据点范围内(通常为50-100)。虽然XANES光谱研究金属离子配位化学的潜力早已为人所知,但数据收集速度直到最近才达到可以以每像素的全光谱收集地图的状态。这种能力的实现现在将XANES光谱映射置于其他光谱成像技术之中,例如傅里叶变换红外(FTIR)光谱和拉曼光谱,这些技术可用于在细胞和组织内原位表征生化成分。在此,我们报告了XANES光谱制图的概念验证应用,开始探索脑组织中的铁形态,这证明了该方法在生物医学科学中的潜力,并确定了未来方案开发中需要考虑的重要领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信