Robust Model-Based Clustering

Juan D. González, R. Maronna, V. Yohai, R. Zamar
{"title":"Robust Model-Based Clustering","authors":"Juan D. González, R. Maronna, V. Yohai, R. Zamar","doi":"10.1201/b18358-20","DOIUrl":null,"url":null,"abstract":"We propose a class of Fisher-consistent robust estimators for mixture models. These estimators are then used to build a robust model-based clustering procedure. We study in detail the case of multivariate Gaussian mixtures and propose an algorithm, similar to the EM algorithm, to compute the proposed estimators and build the robust clusters. An extensive Monte Carlo simulation study shows that our proposal outperforms other robust and non robust, state of the art, model-based clustering procedures. We apply our proposal to a real data set and show that again it outperforms alternative procedures.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b18358-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a class of Fisher-consistent robust estimators for mixture models. These estimators are then used to build a robust model-based clustering procedure. We study in detail the case of multivariate Gaussian mixtures and propose an algorithm, similar to the EM algorithm, to compute the proposed estimators and build the robust clusters. An extensive Monte Carlo simulation study shows that our proposal outperforms other robust and non robust, state of the art, model-based clustering procedures. We apply our proposal to a real data set and show that again it outperforms alternative procedures.
稳健的基于模型的聚类
我们提出了一类混合模型的Fisher-consistent鲁棒估计。然后使用这些估计器构建一个健壮的基于模型的聚类过程。我们详细研究了多元高斯混合的情况,并提出了一种类似于EM算法的算法来计算所提出的估计量并构建鲁棒聚类。一项广泛的蒙特卡罗模拟研究表明,我们的建议优于其他鲁棒和非鲁棒,最先进的,基于模型的聚类过程。我们将我们的建议应用于一个真实的数据集,并再次证明它优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信