{"title":"Inequalities for the Gaussian measure and an application to Wiener space","authors":"Gilles Hargé","doi":"10.1016/S0764-4442(01)02122-X","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a generalization of a result due to Brascamp and Lieb which states that in the space of probabilities with log-concave density with respect to a Gaussian measure on <span><math><mtext>R</mtext><msup><mi></mi><mn>n</mn></msup></math></span>, this Gaussian measure is the one which has strongest moments. We show that this theorem remains true if we replace <em>x</em><sup><em>α</em></sup> by a general convex function. Then, we deduce a correlation inequality for convex functions quite better than the one already known. Finally, we prove a result concerning stochastic analysis on Wiener space through the notion of approximate limit.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 791-794"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02122-X","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420102122X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper deals with a generalization of a result due to Brascamp and Lieb which states that in the space of probabilities with log-concave density with respect to a Gaussian measure on , this Gaussian measure is the one which has strongest moments. We show that this theorem remains true if we replace xα by a general convex function. Then, we deduce a correlation inequality for convex functions quite better than the one already known. Finally, we prove a result concerning stochastic analysis on Wiener space through the notion of approximate limit.