Answer to a question by A. Mandarino, T. Linowski and K. Zyczkowski

Pub Date : 2021-10-14 DOI:10.1142/s0219025723500054
M. Popa
{"title":"Answer to a question by A. Mandarino, T. Linowski and K. Zyczkowski","authors":"M. Popa","doi":"10.1142/s0219025723500054","DOIUrl":null,"url":null,"abstract":"A recent work by A. Mandarino, T. Linowski and K. \\.{Z}yczkowski left open the following question. If $ \\mu_N $ is a certain permutation of entries of a $ N^2 \\times N^2 $ matrix (\"mixing map\") and $ U_N $ is a $ N^2 \\times N^2 $ Haar unitary random matrix, then is the family $ U_N, U_N^{\\mu_N}, ( U_N^2 )^{\\mu_N}, \\dots , ( U_N^m)^{\\mu_N} $ asymptotically free? (here by $A^{ \\mu}$ we understand the matrix resulted by permuting the entries of $ A $ according to the permutation $ \\mu $). This paper presents some techniques for approaching such problems. In particular, one easy consequence of the main result is that the question above has an affirmative answer.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent work by A. Mandarino, T. Linowski and K. \.{Z}yczkowski left open the following question. If $ \mu_N $ is a certain permutation of entries of a $ N^2 \times N^2 $ matrix ("mixing map") and $ U_N $ is a $ N^2 \times N^2 $ Haar unitary random matrix, then is the family $ U_N, U_N^{\mu_N}, ( U_N^2 )^{\mu_N}, \dots , ( U_N^m)^{\mu_N} $ asymptotically free? (here by $A^{ \mu}$ we understand the matrix resulted by permuting the entries of $ A $ according to the permutation $ \mu $). This paper presents some techniques for approaching such problems. In particular, one easy consequence of the main result is that the question above has an affirmative answer.
分享
查看原文
回答a . Mandarino, T. Linowski和K. Zyczkowski的问题
A. Mandarino, T. Linowski和K. Życzkowski最近的一项研究留下了以下问题。如果$ \mu_N $是一个$ N^2 \times N^2 $矩阵(“混合映射”)的某个元素的排列,$ U_N $是一个$ N^2 \times N^2 $ Haar酉随机矩阵,那么族$ U_N, U_N^{\mu_N}, ( U_N^2 )^{\mu_N}, \dots , ( U_N^m)^{\mu_N} $是渐近自由的吗?(这里通过$A^{ \mu}$我们理解根据$ \mu $的排列对$ A $的条目进行排列所得到的矩阵)。本文提出了解决这类问题的一些技术。特别是,主要结果的一个简单结果是,上面的问题有一个肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信