{"title":"A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model","authors":"H. Okamura, Junjun Zheng, T. Dohi","doi":"10.1109/SRDS.2017.24","DOIUrl":null,"url":null,"abstract":"This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"57 1","pages":"114-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.