A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model

H. Okamura, Junjun Zheng, T. Dohi
{"title":"A Statistical Framework on Software Aging Modeling with Continuous-Time Hidden Markov Model","authors":"H. Okamura, Junjun Zheng, T. Dohi","doi":"10.1109/SRDS.2017.24","DOIUrl":null,"url":null,"abstract":"This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"57 1","pages":"114-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper considers the statistical approach to model software degradation process from time series data of system attributes. We first develop the continuous-time Markov chain (CTMC) model to represent the degradation level of system. By combining the CTMC with system attributes distributions, a continuous-time hidden Markov model (CT-HMM) is proposed as the basic model to represent the degradation level of system. To estimate model parameters, we develop the EM algorithm for CT-HMM. The advantage of this modeling is that the estimated model is directly applied to existing CTMC-based software aging and rejuvenation models. In numerical experiments, we exhibit the performance of our method by simulated data and also demonstrate estimating the software degradation process with experimental data in MySQL database system.
基于连续时间隐马尔可夫模型的软件老化建模统计框架
本文考虑用统计方法从系统属性的时间序列数据中对软件退化过程进行建模。首先建立了连续时间马尔可夫链(CTMC)模型来表示系统的退化程度。将CTMC与系统属性分布相结合,提出连续时间隐马尔可夫模型(CT-HMM)作为表示系统退化程度的基本模型。为了估计模型参数,我们开发了CT-HMM的EM算法。该建模的优点是将估算模型直接应用于现有的基于ctmc的软件老化与年轻化模型。在数值实验中,我们通过模拟数据证明了我们的方法的性能,并演示了在MySQL数据库系统中使用实验数据估计软件退化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信