{"title":"The simulation of microstructural evolutions in friction stir additive manufacturing","authors":"Z. Zhang, HS Zhou, ZJ Tan, DS Kong, YF. Wang","doi":"10.1177/09544054231188991","DOIUrl":null,"url":null,"abstract":"Both recrystallization and solid state phase transformation take key role for the determination of final mechanical properties in friction stir additive manufacturing (FSAM) of titanium alloy. Monte Carlo model is developed to simulate the microstructural changes and a two scale strategy is used to simulate both the recrystallization and the solid state phase transformation in FSAM of duplex titanium alloy. Results indicate that the selection of the building direction can lead to different temperature variations in FSAM due to the different heat accumulations. Lower temperature leads to lower cooling rate in FSAM. This is the reason that the volume fraction of α phase is decreased when the process temperature is decreased. Higher temperature leads to the formation of bigger grains when the rotating speed is increased or the transverse speed is decreased.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231188991","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Both recrystallization and solid state phase transformation take key role for the determination of final mechanical properties in friction stir additive manufacturing (FSAM) of titanium alloy. Monte Carlo model is developed to simulate the microstructural changes and a two scale strategy is used to simulate both the recrystallization and the solid state phase transformation in FSAM of duplex titanium alloy. Results indicate that the selection of the building direction can lead to different temperature variations in FSAM due to the different heat accumulations. Lower temperature leads to lower cooling rate in FSAM. This is the reason that the volume fraction of α phase is decreased when the process temperature is decreased. Higher temperature leads to the formation of bigger grains when the rotating speed is increased or the transverse speed is decreased.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.