LBM Analysis of Micro-Convection in MHD Nanofluid Flow

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
A. K. Sunil, Rakesh Kumar
{"title":"LBM Analysis of Micro-Convection in MHD Nanofluid Flow","authors":"A. K. Sunil, Rakesh Kumar","doi":"10.5545/SV-JME.2016.4248","DOIUrl":null,"url":null,"abstract":"The lattice Boltzmann-Bhatnagar-Gross-Krook method was used to simulate Al2O3-water nanofluid to find the effects of Reynolds, Rayleigh and Hartmann numbers, slip coefficient, nanoparticle volume fraction and axial distance on forced convection heat transfer in MATLAB. The ranges of studied Reynolds number, Rayleigh number, magnetic field strength, nanoparticle volume concentration and slip coefficient include 200 ≤ Re ≤ 4000; 103 ≤ Ra ≤ 106; 0 ≤ Ha 90; 0 ≤ φ ≤ 2%; 0.005 ≤ B ≤ 0.02, respectively. The results show that increasing Reynolds number and nanoparticle volume fractions improve heat transfer in the 2D microtube under laminar, turbulent, slip and temperature jump boundary conditions. Decreasing the values of slip coefficient decreases the temperature jump and enhances the Nusselt number. A critical value for the Rayleigh number (105) and magnetic field strength (Ha 10) exists, at which the impacts of the solid volume fraction and slip coefficient effects are the most pronounced. The pressure drop shows a similar type of enhancement in magnitude, as observed in the case of the Nusselt number. However, application of nanofluids for low Reynolds numbers is more beneficial, and the effect of volume fractions are more pronounced in comparison to slip coefficient, though the effects are marginal.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2016.4248","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

The lattice Boltzmann-Bhatnagar-Gross-Krook method was used to simulate Al2O3-water nanofluid to find the effects of Reynolds, Rayleigh and Hartmann numbers, slip coefficient, nanoparticle volume fraction and axial distance on forced convection heat transfer in MATLAB. The ranges of studied Reynolds number, Rayleigh number, magnetic field strength, nanoparticle volume concentration and slip coefficient include 200 ≤ Re ≤ 4000; 103 ≤ Ra ≤ 106; 0 ≤ Ha 90; 0 ≤ φ ≤ 2%; 0.005 ≤ B ≤ 0.02, respectively. The results show that increasing Reynolds number and nanoparticle volume fractions improve heat transfer in the 2D microtube under laminar, turbulent, slip and temperature jump boundary conditions. Decreasing the values of slip coefficient decreases the temperature jump and enhances the Nusselt number. A critical value for the Rayleigh number (105) and magnetic field strength (Ha 10) exists, at which the impacts of the solid volume fraction and slip coefficient effects are the most pronounced. The pressure drop shows a similar type of enhancement in magnitude, as observed in the case of the Nusselt number. However, application of nanofluids for low Reynolds numbers is more beneficial, and the effect of volume fractions are more pronounced in comparison to slip coefficient, though the effects are marginal.
MHD纳米流体流动中微对流的LBM分析
采用点阵Boltzmann-Bhatnagar-Gross-Krook方法在MATLAB中模拟al2o3 -水纳米流体,寻找雷诺数、瑞利数和哈特曼数、滑移系数、纳米颗粒体积分数和轴向距离对强制对流换热的影响。研究的雷诺数、瑞利数、磁场强度、纳米颗粒体积浓度和滑移系数范围为200≤Re≤4000;103≤Ra≤106;0≤Ha 90;0≤φ≤2%;0.005≤B≤0.02。结果表明:在层流、湍流、滑移和温度跳变边界条件下,雷诺数的增加和纳米颗粒体积分数的增加改善了二维微管的传热;滑移系数的减小减小了温度跳变,提高了努塞尔数。在瑞利数(105)和磁场强度(Ha 10)存在临界值时,固体体积分数和滑移系数效应的影响最为显著。在努塞尔数的情况下观察到,压降在大小上也表现出类似的增强。然而,纳米流体在低雷诺数条件下的应用更为有利,体积分数的影响比滑移系数的影响更为明显,尽管这种影响是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
17.60%
发文量
56
审稿时长
4.1 months
期刊介绍: The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis. The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信