{"title":"Genetic Algorithm Based 3D Motion Planning for Unmanned Aerial Vehicle","authors":"Maverick Rivera, J. R. D. del Rosario, A. Bandala","doi":"10.1109/HNICEM48295.2019.9072878","DOIUrl":null,"url":null,"abstract":"Development of Unmanned Aerial Vehicle (UAV) is now a popular field in research. In most of its applications, a pathfinding algorithm is needed in order to find the optimal path and avoid obstacles. In this paper, a genetic algorithm is implemented in order to determine the optimal path for a UAV that will avoid obstacles along the way. The genetic algorithm implemented uses variable-length chromosomes to solve the problem. The results of the simulation of the system yield an average of 29 generations and avoided 53, 500 collisions to find the best path.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Development of Unmanned Aerial Vehicle (UAV) is now a popular field in research. In most of its applications, a pathfinding algorithm is needed in order to find the optimal path and avoid obstacles. In this paper, a genetic algorithm is implemented in order to determine the optimal path for a UAV that will avoid obstacles along the way. The genetic algorithm implemented uses variable-length chromosomes to solve the problem. The results of the simulation of the system yield an average of 29 generations and avoided 53, 500 collisions to find the best path.