Junxing Zhu, Jiawei Zhang, Lifang He, Quanyuan Wu, Bin Zhou, Chenwei Zhang, Philip S. Yu
{"title":"Broad Learning based Multi-Source Collaborative Recommendation","authors":"Junxing Zhu, Jiawei Zhang, Lifang He, Quanyuan Wu, Bin Zhou, Chenwei Zhang, Philip S. Yu","doi":"10.1145/3132847.3132976","DOIUrl":null,"url":null,"abstract":"Anchor links connect information entities, such as entities of movies or products, across networks from different sources, and thus information in these networks can be transferred directly via anchor links. Therefore, anchor links have great value to many cross-network applications, such as cross-network social link prediction and cross-network recommendation. In this paper, we focus on studying the recommendation problem that can provide ratings of items or services. To address the problem, we propose a Cross-network Collaborative Matrix Factorization (CCMF) recommendation framework based on broad learning setting, which can effectively integrate multi-source information and alleviate the sparse information problem in each individual network. Based on item anchor links CCMF can fuse item similarity information and item latent information across networks from different sources. And different from most of the traditional works, CCMF can make multi-source recommendation tasks collaborate together via the information transfer based on the broad learning setting. During the transfer process, a novel cross-network similarity transfer method is applied to keep the consistency of item similarities between two different networks, and a domain adaptation matrix is used to overcome the domain difference problem. We conduct experiments to compare the proposed CCMF method with both classic and state-of-the-art recommendation techniques. The experimental results illustrate that CCMF outperforms other methods in different experimental circumstances, and has great advantages on dealing with different data sparse problems.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Anchor links connect information entities, such as entities of movies or products, across networks from different sources, and thus information in these networks can be transferred directly via anchor links. Therefore, anchor links have great value to many cross-network applications, such as cross-network social link prediction and cross-network recommendation. In this paper, we focus on studying the recommendation problem that can provide ratings of items or services. To address the problem, we propose a Cross-network Collaborative Matrix Factorization (CCMF) recommendation framework based on broad learning setting, which can effectively integrate multi-source information and alleviate the sparse information problem in each individual network. Based on item anchor links CCMF can fuse item similarity information and item latent information across networks from different sources. And different from most of the traditional works, CCMF can make multi-source recommendation tasks collaborate together via the information transfer based on the broad learning setting. During the transfer process, a novel cross-network similarity transfer method is applied to keep the consistency of item similarities between two different networks, and a domain adaptation matrix is used to overcome the domain difference problem. We conduct experiments to compare the proposed CCMF method with both classic and state-of-the-art recommendation techniques. The experimental results illustrate that CCMF outperforms other methods in different experimental circumstances, and has great advantages on dealing with different data sparse problems.