Efficient methods to generate cryptographically significant binary diffusion layers

S. Akleylek, V. Rijmen, M. T. Sakalli, Emir Öztürk
{"title":"Efficient methods to generate cryptographically significant binary diffusion layers","authors":"S. Akleylek, V. Rijmen, M. T. Sakalli, Emir Öztürk","doi":"10.1049/iet-ifs.2016.0085","DOIUrl":null,"url":null,"abstract":"In this study, the authors propose new methods using a divide-and-conquer strategy to generate n × n binary matrices (for composite n) with a high/maximum branch number and the same Hamming weight in each row and column. They introduce new types of binary matrices: namely, ( BHwC ) t, m and ( BCwC ) q, m types, which are a combination of Hadamard and circulant matrices, and the recursive use of circulant matrices, respectively. With the help of these hybrid structures, the search space to generate a binary matrix with a high/maximum branch number is drastically reduced. By using the proposed methods, they focus on generating 12 × 12, 16 × 16 and 32 × 32 binary matrices with a maximum or maximum achievable branch number and the lowest implementation costs (to the best of their knowledge) to be used in block ciphers. Then, they discuss the implementation properties of binary matrices generated and present experimental results for binary matrices in these sizes. Finally, they apply the proposed methods to larger sizes, i.e. 48 × 48, 64 × 64 and 80 × 80 binary matrices having some applications in secure multi-party computation and fully homomorphic encryption.","PeriodicalId":13305,"journal":{"name":"IET Inf. Secur.","volume":"55 1","pages":"177-187"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ifs.2016.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, the authors propose new methods using a divide-and-conquer strategy to generate n × n binary matrices (for composite n) with a high/maximum branch number and the same Hamming weight in each row and column. They introduce new types of binary matrices: namely, ( BHwC ) t, m and ( BCwC ) q, m types, which are a combination of Hadamard and circulant matrices, and the recursive use of circulant matrices, respectively. With the help of these hybrid structures, the search space to generate a binary matrix with a high/maximum branch number is drastically reduced. By using the proposed methods, they focus on generating 12 × 12, 16 × 16 and 32 × 32 binary matrices with a maximum or maximum achievable branch number and the lowest implementation costs (to the best of their knowledge) to be used in block ciphers. Then, they discuss the implementation properties of binary matrices generated and present experimental results for binary matrices in these sizes. Finally, they apply the proposed methods to larger sizes, i.e. 48 × 48, 64 × 64 and 80 × 80 binary matrices having some applications in secure multi-party computation and fully homomorphic encryption.
生成密码有效二进制扩散层的有效方法
在这项研究中,作者提出了新的方法,使用分治策略来生成n × n个二元矩阵(对于复合n),每个行和列具有高/最大分支数和相同的汉明权重。他们引入了新的二元矩阵类型,即(BHwC) t, m和(BCwC) q, m类型,它们分别是Hadamard矩阵和循环矩阵的组合,以及循环矩阵的递归使用。在这些混合结构的帮助下,生成具有高/最大分支数的二进制矩阵的搜索空间大大减少。通过使用所提出的方法,他们专注于生成具有最大或最大可实现分支数和最低实现成本(据他们所知)的12 × 12、16 × 16和32 × 32二进制矩阵,以用于分组密码。然后,他们讨论了生成的二进制矩阵的实现特性,并给出了这些尺寸的二进制矩阵的实验结果。最后,他们将所提出的方法应用于更大尺寸的二进制矩阵,即48 × 48、64 × 64和80 × 80二进制矩阵,这些矩阵在安全多方计算和完全同态加密中具有一定的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信