Improved Correlated Sampling for Join Size Estimation

Taining Wang, C. Chan
{"title":"Improved Correlated Sampling for Join Size Estimation","authors":"Taining Wang, C. Chan","doi":"10.1109/ICDE48307.2020.00035","DOIUrl":null,"url":null,"abstract":"Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"7 1","pages":"325-336"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.
用于连接大小估计的改进相关抽样
最近对基于采样的连接大小估计的研究集中在一种很有前途的新技术上,即相关采样。虽然已经提出了该技术的几种变体,但缺乏对该技术家族的系统研究。在本文中,我们首先引入了一个框架,以五个参数来表征其设计空间。基于此框架,我们提出了一种新的基于相关采样的技术来解决现有技术的局限性。我们的新技术是基于使用离散学习方法来估计样本的连接大小。我们通过实验比较了我们的新技术的多个变体的性能,并确定了提供最佳估计质量的混合变体。这种混合变体不仅优于最先进的相关采样技术,而且对小样本和倾斜数据也更健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信