{"title":"Improved Correlated Sampling for Join Size Estimation","authors":"Taining Wang, C. Chan","doi":"10.1109/ICDE48307.2020.00035","DOIUrl":null,"url":null,"abstract":"Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"7 1","pages":"325-336"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Recent research on sampling-based join size estimation has focused on a promising new technique known as correlated sampling. While several variants of this technique have been proposed, there is a lack of a systematic study of this family of techniques. In this paper, we first introduce a framework to characterize its design space in terms of five parameters. Based on this framework, we propose a new correlated sampling based technique to address the limitations of existing techniques. Our new technique is based on using a discrete learning method for estimating the join size from samples. We experimentally compare the performance of multiple variants of our new technique and identify a hybrid variant that provides the best estimation quality. This hybrid variant not only outperforms the state-of-the-art correlated sampling technique, but it is also more robust to small samples and skewed data.