An Alpine Bouquet of Algebraic Topology

Christian Ausoni, K. Hess, Brenda Johnson, I. Moerdijk, J. Scherer
{"title":"An Alpine Bouquet of Algebraic Topology","authors":"Christian Ausoni, K. Hess, Brenda Johnson, I. Moerdijk, J. Scherer","doi":"10.1090/CONM/708","DOIUrl":null,"url":null,"abstract":"From a bimodule $M$ over an exact category $C$, we define an exact category $C\\ltimes M$ with a projection down to $C$. This construction classifies certain split square zero extensions of exact categories. We show that the trace map induces an equivalence between the relative $K$-theory of $C\\ltimes M$ and its relative topological cyclic homology. When applied to the bimodule $\\hom(-,-\\otimes_AM)$ on the category of finitely generated projective modules over a ring $A$ one recovers the classical Dundas-McCarthy theorem for split square zero extensions of rings.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

From a bimodule $M$ over an exact category $C$, we define an exact category $C\ltimes M$ with a projection down to $C$. This construction classifies certain split square zero extensions of exact categories. We show that the trace map induces an equivalence between the relative $K$-theory of $C\ltimes M$ and its relative topological cyclic homology. When applied to the bimodule $\hom(-,-\otimes_AM)$ on the category of finitely generated projective modules over a ring $A$ one recovers the classical Dundas-McCarthy theorem for split square zero extensions of rings.
代数拓扑的高山花束
从一个精确范畴C$上的双模M$,我们定义了一个精确范畴C$乘以M$,其投影到C$。这个构造对精确范畴的某些分裂的平方零扩展进行了分类。我们证明了迹映射在C\l乘以M$的相对K$-理论和它的相对拓扑循环同调之间推导出一个等价。当应用于环上有限生成的射影模范畴上的双模$\ home (-,-\otimes_AM)$时,恢复了环的分裂平方零扩展的经典Dundas-McCarthy定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信