Fast Fluid Simulation via Dynamic Multi-Scale Gridding

Jinxian Liu, Ye Chen, Bingbing Ni, Wei Ren, Zhenbo Yu, Xiaoyang Huang
{"title":"Fast Fluid Simulation via Dynamic Multi-Scale Gridding","authors":"Jinxian Liu, Ye Chen, Bingbing Ni, Wei Ren, Zhenbo Yu, Xiaoyang Huang","doi":"10.1609/aaai.v37i2.25255","DOIUrl":null,"url":null,"abstract":"Recent works on learning-based frameworks for Lagrangian (i.e., particle-based) fluid simulation, though bypassing iterative pressure projection via efficient convolution operators, are still time-consuming due to excessive amount of particles. To address this challenge, we propose a dynamic multi-scale gridding method to reduce the magnitude of elements that have to be processed, by observing repeated particle motion patterns within certain consistent regions. Specifically, we hierarchically generate multi-scale micelles in Euclidean space by grouping particles that share similar motion patterns/characteristics based on super-light motion and scale estimation modules. With little internal motion variation, each micelle is modeled as a single rigid body with convolution only applied to a single representative particle. In addition, a distance-based interpolation is conducted to propagate relative motion message among micelles. With our efficient design, the network produces high visual fidelity fluid simulations with the inference time to be only 4.24 ms/frame (with 6K fluid particles), hence enables real-time human-computer interaction and animation. Experimental results on multiple datasets show that our work achieves great simulation acceleration with negligible prediction error increase.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"63 1","pages":"1675-1682"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i2.25255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent works on learning-based frameworks for Lagrangian (i.e., particle-based) fluid simulation, though bypassing iterative pressure projection via efficient convolution operators, are still time-consuming due to excessive amount of particles. To address this challenge, we propose a dynamic multi-scale gridding method to reduce the magnitude of elements that have to be processed, by observing repeated particle motion patterns within certain consistent regions. Specifically, we hierarchically generate multi-scale micelles in Euclidean space by grouping particles that share similar motion patterns/characteristics based on super-light motion and scale estimation modules. With little internal motion variation, each micelle is modeled as a single rigid body with convolution only applied to a single representative particle. In addition, a distance-based interpolation is conducted to propagate relative motion message among micelles. With our efficient design, the network produces high visual fidelity fluid simulations with the inference time to be only 4.24 ms/frame (with 6K fluid particles), hence enables real-time human-computer interaction and animation. Experimental results on multiple datasets show that our work achieves great simulation acceleration with negligible prediction error increase.
基于动态多尺度网格的快速流体仿真
最近关于拉格朗日(即基于粒子)流体模拟的基于学习框架的工作,尽管通过有效的卷积算子绕过了迭代压力投影,但由于粒子数量过多,仍然很耗时。为了解决这一挑战,我们提出了一种动态多尺度网格化方法,通过观察某些一致区域内重复的粒子运动模式来减少必须处理的元素的大小。具体来说,我们基于超轻运动和尺度估计模块,通过将具有相似运动模式/特征的粒子分组,在欧几里得空间中分层生成多尺度胶束。由于内部运动变化很小,每个胶束被建模为单个刚体,卷积仅应用于单个代表性粒子。此外,采用基于距离的插值方法在胶束间传播相对运动信息。通过我们高效的设计,网络产生高视觉保真度的流体模拟,推理时间仅为4.24 ms/帧(6K流体粒子),从而实现实时人机交互和动画。在多个数据集上的实验结果表明,我们的工作在预测误差增加可以忽略不计的情况下实现了很大的仿真加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信