Appraisal of ANN and ANFIS for Predicting Vertical Total Electron Content (VTEC) in the Ionosphere for GPS Observations

A. Ewusi, B. Apeani, I. Ahenkorah, R. Nartey
{"title":"Appraisal of ANN and ANFIS for Predicting Vertical Total Electron Content (VTEC) in the Ionosphere for GPS Observations","authors":"A. Ewusi, B. Apeani, I. Ahenkorah, R. Nartey","doi":"10.4314/GM.V17I2","DOIUrl":null,"url":null,"abstract":"Positional accuracy in the usage of GPS receiver is one of the major challenges in GPS observations. The propagation of the GPS signals are interfered by free electrons which are the massive particles in the ionosphere region and results in delays in the transmission of signals to the Earth. Therefore, the total electron content is a key parameter in mitigating ionospheric effects on GPS receivers. Many researchers have therefore proposed various models and methods for predicting the total electron content along the signal path. This paper focuses on the use of two different models for predicting the Vertical Total Electron Content (VTEC). Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms have been developed for the prediction of VTEC in the ionosphere.  The developed ANN and ANFIS model gave Root Mean Square Error (RMSE) of 1.953 and 1.190 respectively.  From the results it can be stated that the ANFIS is more suitable tool for the prediction of VTEC. Keywords: Artificial Neural Network, Adaptive Neuro Fuzzy Inference System, Vertical Total Electron","PeriodicalId":12530,"journal":{"name":"Ghana Mining Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ghana Mining Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GM.V17I2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Positional accuracy in the usage of GPS receiver is one of the major challenges in GPS observations. The propagation of the GPS signals are interfered by free electrons which are the massive particles in the ionosphere region and results in delays in the transmission of signals to the Earth. Therefore, the total electron content is a key parameter in mitigating ionospheric effects on GPS receivers. Many researchers have therefore proposed various models and methods for predicting the total electron content along the signal path. This paper focuses on the use of two different models for predicting the Vertical Total Electron Content (VTEC). Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms have been developed for the prediction of VTEC in the ionosphere.  The developed ANN and ANFIS model gave Root Mean Square Error (RMSE) of 1.953 and 1.190 respectively.  From the results it can be stated that the ANFIS is more suitable tool for the prediction of VTEC. Keywords: Artificial Neural Network, Adaptive Neuro Fuzzy Inference System, Vertical Total Electron
ANN和ANFIS对GPS观测电离层垂直总电子含量(VTEC)预测的评价
GPS接收机的定位精度是GPS观测中的主要挑战之一。GPS信号的传播受到自由电子的干扰,而自由电子是电离层区域的大质量粒子,导致信号传输到地球的延迟。因此,总电子含量是减轻电离层对GPS接收机影响的关键参数。因此,许多研究人员提出了各种模型和方法来预测沿信号路径的总电子含量。本文着重讨论了两种不同的模型对垂直总电子含量(VTEC)的预测。人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)算法已被开发用于电离层VTEC的预测。所建立的ANN和ANFIS模型的均方根误差(RMSE)分别为1.953和1.190。结果表明,ANFIS是更适合于VTEC预测的工具。关键词:人工神经网络,自适应神经模糊推理系统,垂直总电子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信