Sandino Torres, Roberto Ortega, P. Acosta, Edisson Caldeŕon
{"title":"Hot Incremental Forming of Biocomposites Developed from Linen Fibres and a Thermoplastic Matrix","authors":"Sandino Torres, Roberto Ortega, P. Acosta, Edisson Caldeŕon","doi":"10.5545/SV-JME.2020.6936","DOIUrl":null,"url":null,"abstract":"The use of biodegradable materials has a growing field of application due to environmental concerns, however, scientific research on incremental forming using biomaterials is scarce. Thus, this study focuses on the single point incremental forming (SPIF) process applied to a composite sheet that combines a biodegradable thermoplastic matrix (Solanyl) reinforced with natural fibres (flax). The influence of the process parameters on the final geometry is determined, evaluating the effect of the following factors: step depth, wall angle and temperature reached during the process. Additionally, a heated aqueous medium is incorporated which facilitates the formability of the composite sheets. This method is especially useful for materials that have poor formability at room temperature. The benefits of using controlled heat include the reduction of formation forces applied to the plate, improved accuracy due to the reduction of elastic recovery, and the manipulation of the samples remarkably close to the glass transition temperatures. Through this experimental study with the variables analysed, a maximum shaping depth of 310 mm is obtained. These results confirm that the single point shaping used with bioplastic materials is possible and has positive outcomes for incremental forming.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"58 1","pages":"123-132"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2020.6936","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 10
Abstract
The use of biodegradable materials has a growing field of application due to environmental concerns, however, scientific research on incremental forming using biomaterials is scarce. Thus, this study focuses on the single point incremental forming (SPIF) process applied to a composite sheet that combines a biodegradable thermoplastic matrix (Solanyl) reinforced with natural fibres (flax). The influence of the process parameters on the final geometry is determined, evaluating the effect of the following factors: step depth, wall angle and temperature reached during the process. Additionally, a heated aqueous medium is incorporated which facilitates the formability of the composite sheets. This method is especially useful for materials that have poor formability at room temperature. The benefits of using controlled heat include the reduction of formation forces applied to the plate, improved accuracy due to the reduction of elastic recovery, and the manipulation of the samples remarkably close to the glass transition temperatures. Through this experimental study with the variables analysed, a maximum shaping depth of 310 mm is obtained. These results confirm that the single point shaping used with bioplastic materials is possible and has positive outcomes for incremental forming.
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.