Information anchored reference‐based sensitivity analysis for truncated normal data with application to survival analysis

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
A. Atkinson, S. Cro, J. Carpenter, M. Kenward
{"title":"Information anchored reference‐based sensitivity analysis for truncated normal data with application to survival analysis","authors":"A. Atkinson, S. Cro, J. Carpenter, M. Kenward","doi":"10.1111/stan.12250","DOIUrl":null,"url":null,"abstract":"The primary analysis of time‐to‐event data typically makes the censoring at random assumption, that is, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved. In such cases, we need to explore the robustness of inference to more pragmatic assumptions about patients post‐censoring in sensitivity analyses. Reference‐based multiple imputation, which avoids analysts explicitly specifying the parameters of the unobserved data distribution, has proved attractive to researchers. Building on results for longitudinal continuous data, we show that inference using a Tobit regression imputation model for reference‐based sensitivity analysis with right censored log normal data is information anchored, meaning the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. We illustrate our theoretical results using simulation and a clinical trial case study.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"62 1","pages":"500 - 523"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12250","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

The primary analysis of time‐to‐event data typically makes the censoring at random assumption, that is, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved. In such cases, we need to explore the robustness of inference to more pragmatic assumptions about patients post‐censoring in sensitivity analyses. Reference‐based multiple imputation, which avoids analysts explicitly specifying the parameters of the unobserved data distribution, has proved attractive to researchers. Building on results for longitudinal continuous data, we show that inference using a Tobit regression imputation model for reference‐based sensitivity analysis with right censored log normal data is information anchored, meaning the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. We illustrate our theoretical results using simulation and a clinical trial case study.
截断正常数据的信息锚定参考敏感性分析及其在生存分析中的应用
对时间到事件数据的初步分析通常在随机假设下进行审查,也就是说,在模型中有协变量的条件下,事件时间的分布是相同的,无论它们是观察到的还是未观察到的。在这种情况下,我们需要探索对敏感性分析中患者后审查的更实用假设的推断的稳健性。基于参考的多重插值避免了分析人员明确指定未观测数据分布的参数,对研究人员具有吸引力。基于纵向连续数据的结果,我们表明,使用Tobit回归归算模型进行基于参考的敏感性分析,使用右截尾对数正态数据的推断是信息锚定的,这意味着在主要分析下由于缺失数据而丢失的信息比例在敏感性分析中保持不变。我们使用模拟和临床试验案例研究来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信