Multiple Granularity Descriptors for Fine-Grained Categorization

Dequan Wang, Zhiqiang Shen, Jie Shao, Wei Zhang, X. Xue, Zeyu Zhang
{"title":"Multiple Granularity Descriptors for Fine-Grained Categorization","authors":"Dequan Wang, Zhiqiang Shen, Jie Shao, Wei Zhang, X. Xue, Zeyu Zhang","doi":"10.1109/ICCV.2015.276","DOIUrl":null,"url":null,"abstract":"Fine-grained categorization, which aims to distinguish subordinate-level categories such as bird species or dog breeds, is an extremely challenging task. This is due to two main issues: how to localize discriminative regions for recognition and how to learn sophisticated features for representation. Neither of them is easy to handle if there is insufficient labeled data. We leverage the fact that a subordinate-level object already has other labels in its ontology tree. These \"free\" labels can be used to train a series of CNN-based classifiers, each specialized at one grain level. The internal representations of these networks have different region of interests, allowing the construction of multi-grained descriptors that encode informative and discriminative features covering all the grain levels. Our multiple granularity framework can be learned with the weakest supervision, requiring only image-level label and avoiding the use of labor-intensive bounding box or part annotations. Experimental results on three challenging fine-grained image datasets demonstrate that our approach outperforms state-of-the-art algorithms, including those requiring strong labels.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"58 1","pages":"2399-2406"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 199

Abstract

Fine-grained categorization, which aims to distinguish subordinate-level categories such as bird species or dog breeds, is an extremely challenging task. This is due to two main issues: how to localize discriminative regions for recognition and how to learn sophisticated features for representation. Neither of them is easy to handle if there is insufficient labeled data. We leverage the fact that a subordinate-level object already has other labels in its ontology tree. These "free" labels can be used to train a series of CNN-based classifiers, each specialized at one grain level. The internal representations of these networks have different region of interests, allowing the construction of multi-grained descriptors that encode informative and discriminative features covering all the grain levels. Our multiple granularity framework can be learned with the weakest supervision, requiring only image-level label and avoiding the use of labor-intensive bounding box or part annotations. Experimental results on three challenging fine-grained image datasets demonstrate that our approach outperforms state-of-the-art algorithms, including those requiring strong labels.
用于细粒度分类的多粒度描述符
细粒度分类是一项极具挑战性的任务,其目的是区分从属级别的类别,如鸟类或狗的品种。这主要是由于两个问题:如何定位识别的判别区域,以及如何学习复杂的特征来表示。如果没有足够的标记数据,这两种方法都不容易处理。我们利用了从属级对象在其本体树中已经有其他标签的事实。这些“免费”标签可以用来训练一系列基于cnn的分类器,每个分类器在一个粒度级别上进行专业化。这些网络的内部表示具有不同的兴趣区域,允许构建多粒度描述符,这些描述符编码涵盖所有粒度级别的信息和判别特征。我们的多粒度框架可以在最弱的监督下学习,只需要图像级别的标签,避免使用劳动密集型的边界框或部分注释。在三个具有挑战性的细粒度图像数据集上的实验结果表明,我们的方法优于最先进的算法,包括那些需要强标签的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信