A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity

IF 1.3 4区 数学 Q1 MATHEMATICS
D. Bhimani, H. Hajaiej, S. Haque, Tingjian Luo
{"title":"A sharp Gagliardo-Nirenberg inequality and its application to fractional problems with inhomogeneous nonlinearity","authors":"D. Bhimani, H. Hajaiej, S. Haque, Tingjian Luo","doi":"10.3934/eect.2022033","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

The purpose of this paper is threefold. Firstly, we establish a Gagliardo-Nirenberg inequality with optimal constant, which involves a fractional norm and an inhomogeneous nonlinearity. Secondly, as an application of this inequality, we study ground state standing waves to a nonlinear Schrödinger equation (NLS) with a mixed fractional Laplacians and a inhomogeneous nonlinearity, and consider a minimization problem which gives the existence of ground state solutions with prescribed mass. In particular, by making use of this Gagliardo-Nirenberg inequality and its optimal constant, we give a sufficient and necessary condition for the existence results. Finally, we develop local wellposedness theory for NLS with a mixed fractional Laplacians and a inhomogeneous nonlinearity. In the process, we prove Strichartz estimates in Lorentz spaces which may be of independent interest.
尖锐的Gagliardo-Nirenberg不等式及其在非齐次非线性分数型问题中的应用
本文的目的有三个。首先,我们建立了一个包含分数范数和非齐次非线性的最优常数Gagliardo-Nirenberg不等式。其次,作为该不等式的应用,我们研究了具有混合分数阶拉普拉斯方程和非齐次非线性的非线性Schrödinger方程(NLS)的基态驻波,并考虑了具有规定质量的基态解存在性的最小化问题。特别地,利用Gagliardo-Nirenberg不等式及其最优常数,给出了存在性结果的充要条件。最后,我们建立了具有混合分数阶拉普拉斯算子和非齐次非线性的NLS的局部适定性理论。在此过程中,我们证明了Lorentz空间中的Strichartz估计,这可能是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信