Investigation on the control of multiphase flow behavior in a continuous casting tundish during ladle change

X. Rui, L. Haitao, Hai-jun Wang, Li-zhong Chang, S. Qiu
{"title":"Investigation on the control of multiphase flow behavior in a continuous casting tundish during ladle change","authors":"X. Rui, L. Haitao, Hai-jun Wang, Li-zhong Chang, S. Qiu","doi":"10.1051/metal/2020070","DOIUrl":null,"url":null,"abstract":"The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/metal/2020070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.
连铸中间包换包过程中多相流行为控制研究
采用物理模型研究了钢包换包过程中单链中间包内的瞬态多相流动行为。采用水和硅油来模拟钢水和炉渣。评价和讨论了湍流抑制剂对换包过程中夹渣和钢暴露的影响。分析了渣带对水-油-气流动的影响。对于原中间包,在换包过程中,连续将冲击区顶部油相拖入中间包浴中打开,形成乳化现象。湍流抑制剂通过降低冲击区上部的液体速度,大大减少了换包过程中夹带的渣量和钢的暴露量,从而消除了乳化现象。此外,TI-2的使用通过控制渣滴的运动,有效地降低了渣带对钢洁净度的影响。工业试验结果表明,TI-2的应用大大减少了热轧带钢卷中因钢包更换而引起的线状夹杂物的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信