Mining Projection Transformation Based on Gene Expression Programming of Multi-Variable Niches

Yue Jiang, Changjie Tang, Haichun Zheng, Jiaoling Zheng, Chuan Li, Qian Luo, Jun Zhu
{"title":"Mining Projection Transformation Based on Gene Expression Programming of Multi-Variable Niches","authors":"Yue Jiang, Changjie Tang, Haichun Zheng, Jiaoling Zheng, Chuan Li, Qian Luo, Jun Zhu","doi":"10.1109/ICNC.2008.53","DOIUrl":null,"url":null,"abstract":"Map projection transformation is a basic operation for topographic and spatial data transformation in geographic information system. Existing methods need projection type and corresponding parameters, and manually select regression model. The transformation formulas are complex with operators based on cartology. This paper applies gene expression programming technique to projection transformation. The contributions include: (1)Formalizing the concepts of projection gene and generation gap, etc.; (2)Designing the fitness function with penalty; (3)Proposing a novel method of projection transformation-GEP based on multi-variable niches(MVN-GEP); The method automatically evolves the constants and constructs the easy formulas; proposing the algorithms of partitioning multi-variable niches(PMVN) and replacing individuals(RI); (4)Experiments show that new method is effective and the output formulas are easy. The average top fitness of geodetic abscissa is 97.1324 and that of geodetic ordinate is 97.7351; The average generation of geodetic abscissa is 238 and that of geodetic ordinate is 216.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"46 1","pages":"288-292"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Map projection transformation is a basic operation for topographic and spatial data transformation in geographic information system. Existing methods need projection type and corresponding parameters, and manually select regression model. The transformation formulas are complex with operators based on cartology. This paper applies gene expression programming technique to projection transformation. The contributions include: (1)Formalizing the concepts of projection gene and generation gap, etc.; (2)Designing the fitness function with penalty; (3)Proposing a novel method of projection transformation-GEP based on multi-variable niches(MVN-GEP); The method automatically evolves the constants and constructs the easy formulas; proposing the algorithms of partitioning multi-variable niches(PMVN) and replacing individuals(RI); (4)Experiments show that new method is effective and the output formulas are easy. The average top fitness of geodetic abscissa is 97.1324 and that of geodetic ordinate is 97.7351; The average generation of geodetic abscissa is 238 and that of geodetic ordinate is 216.
基于多变量生态位基因表达式规划的挖掘投影变换
地图投影变换是地理信息系统中地形和空间数据变换的基本操作。现有的方法需要投影类型和相应的参数,并手动选择回归模型。变换公式是复杂的,有基于目录学的算子。本文将基因表达式编程技术应用于投影变换。主要贡献有:(1)确立了投射基因、代沟等概念;(2)设计带有惩罚的适应度函数;(3)提出了一种新的投影变换方法——基于多变量生态位的gep (MVN-GEP);该方法自动演化常数并构造简单的公式;提出了多变量生态位划分(PMVN)和个体替换(RI)算法;(4)实验表明,新方法是有效的,输出公式简单。测地横坐标的平均上拟合值为97.1324,测地纵坐标的平均上拟合值为97.7351;测地横坐标平均生成238次,测地纵坐标平均生成216次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信