{"title":"Modeling Intransitivity in Matchup and Comparison Data","authors":"Shuo Chen, T. Joachims","doi":"10.1145/2835776.2835787","DOIUrl":null,"url":null,"abstract":"We present a method for learning potentially intransitive preference relations from pairwise comparison and matchup data. Unlike standard preference-learning models that represent the properties of each item/player as a single number, our method infers a multi-dimensional representation for the different aspects of each item/player's strength. We show that our model can represent any pairwise stochastic preference relation and provide a comprehensive evaluation of its predictive performance on a wide range of pairwise comparison tasks and matchup problems from online video games and sports, to peer grading and election. We find that several of these task -- especially matchups in online video games -- show substantial intransitivity that our method can model effectively.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
We present a method for learning potentially intransitive preference relations from pairwise comparison and matchup data. Unlike standard preference-learning models that represent the properties of each item/player as a single number, our method infers a multi-dimensional representation for the different aspects of each item/player's strength. We show that our model can represent any pairwise stochastic preference relation and provide a comprehensive evaluation of its predictive performance on a wide range of pairwise comparison tasks and matchup problems from online video games and sports, to peer grading and election. We find that several of these task -- especially matchups in online video games -- show substantial intransitivity that our method can model effectively.