{"title":"The question of negative temperatures in thermodynamics and statistical mechanics","authors":"David A. Lavis","doi":"10.1016/j.shpsb.2019.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>We show that both positive and negative absolute temperatures and monotonically increasing and decreasing entropy in adiabatic processes are consistent with Carathéodory's version of the second law and we explore the modifications of the Kelvin–Planck and Clausius versions which are needed to accommodate these possibilities. We show, in part by using the equivalence of distributions and the canonical distribution, that the correct microcanonical entropy, is the surface (Boltzmann) form rather than the bulk (Gibbs) form thereby providing for the possibility of negative temperatures and we counter the contention on the part of a number of authors that the surface entropy fails to satisfy fundamental thermodynamic relationships.</p></div>","PeriodicalId":54442,"journal":{"name":"Studies in History and Philosophy of Modern Physics","volume":"67 ","pages":"Pages 26-63"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.shpsb.2019.02.002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in History and Philosophy of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355219818300893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 6
Abstract
We show that both positive and negative absolute temperatures and monotonically increasing and decreasing entropy in adiabatic processes are consistent with Carathéodory's version of the second law and we explore the modifications of the Kelvin–Planck and Clausius versions which are needed to accommodate these possibilities. We show, in part by using the equivalence of distributions and the canonical distribution, that the correct microcanonical entropy, is the surface (Boltzmann) form rather than the bulk (Gibbs) form thereby providing for the possibility of negative temperatures and we counter the contention on the part of a number of authors that the surface entropy fails to satisfy fundamental thermodynamic relationships.
期刊介绍:
Studies in History and Philosophy of Modern Physics is devoted to all aspects of the history and philosophy of modern physics broadly understood, including physical aspects of astronomy, chemistry and other non-biological sciences. The primary focus is on physics from the mid/late-nineteenth century to the present, the period of emergence of the kind of theoretical physics that has come to dominate the exact sciences in the twentieth century. The journal is internationally oriented with contributions from a wide range of perspectives. In addition to purely historical or philosophical papers, the editors particularly encourage papers that combine these two disciplines.
The editors are also keen to publish papers of interest to physicists, as well as specialists in history and philosophy of physics.