Some weak covering properties and infinite games

M. Sakai
{"title":"Some weak covering properties and infinite games","authors":"M. Sakai","doi":"10.2478/s11533-013-0343-4","DOIUrl":null,"url":null,"abstract":"We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21], too. The selection principle S1(Do,Do) is also discussed in view of a special base. We show that every subspace of a hereditarily Lindelöf space with an ortho-base satisfies S1(Do,Do).","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"4 1","pages":"322-329"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0343-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21], too. The selection principle S1(Do,Do) is also discussed in view of a special base. We show that every subspace of a hereditarily Lindelöf space with an ortho-base satisfies S1(Do,Do).
一些弱覆盖属性和无限游戏
我们证明了(I)存在一个Lindelöf空间,它不是弱门格尔空间,(II)存在一个门格尔空间,其中在博弈Gfin(O,Do)中,TWO没有制胜策略。这些肯定地回答了Babinkostova, Pansera和Scheepers [Babinkostova L., Pansera b.a., Scheepers M.,弱覆盖性质和无限博弈,拓扑应用]提出的问题。生态学报,2012,159(17),3644-3657。结果(I)自动给出Wingers问题的肯定答案[Wingers L., Box product and Hurewicz spaces, Topology application]。[j] .地球物理学报,1995,64(1),9-21。针对一种特殊的碱基,讨论了选用原则S1(Do,Do)。我们证明了具有正交基的遗传Lindelöf空间的每一个子空间都满足S1(Do,Do)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信