Singularly Optimal Randomized Leader Election

S. Kutten, W. Moses, Gopal Pandurangan, D. Peleg
{"title":"Singularly Optimal Randomized Leader Election","authors":"S. Kutten, W. Moses, Gopal Pandurangan, D. Peleg","doi":"10.4230/LIPIcs.DISC.2020.22","DOIUrl":null,"url":null,"abstract":"This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in networks. Our main result is a randomized distributed leader election algorithm for asynchronous complete networks that is essentially (up to a polylogarithmic factor) singularly optimal. Our algorithm uses $O(n)$ messages with high probability and runs in $O(\\log^2 n)$ time (with high probability) to elect a unique leader. The $O(n)$ message complexity should be contrasted with the $\\Omega(n \\log n)$ lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks. Hence, our result also separates the message complexities of randomized and deterministic leader election. More importantly, our (randomized) time complexity of $O(\\log^2 n)$ for obtaining the optimal $O(n)$ message complexity is significantly smaller than the long-standing $\\tilde{\\Theta}(n)$ time complexity obtained by Afek and Gafni and by Singh (SIAM J. Comput., 1997) for message optimal (deterministic) election in asynchronous networks. \nIn synchronous complete networks, Afek and Gafni showed an essentially singularly optimal deterministic algorithm with $O(\\log n)$ time and $O(n \\log n)$ messages. Ramanathan et al. (Distrib. Comput. 2007) used randomization to improve the message complexity, and showed a randomized algorithm with $O(n)$ messages and $O(\\log n)$ time (with failure probability $O(1 / \\log^{\\Omega(1)}n)$). Our second result is a tightly singularly optimal randomized algorithm, with $O(1)$ time and $O(n)$ messages, for this setting, whose time bound holds with certainty and message bound holds with high probability.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"22 1","pages":"22:1-22:18"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2020.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in networks. Our main result is a randomized distributed leader election algorithm for asynchronous complete networks that is essentially (up to a polylogarithmic factor) singularly optimal. Our algorithm uses $O(n)$ messages with high probability and runs in $O(\log^2 n)$ time (with high probability) to elect a unique leader. The $O(n)$ message complexity should be contrasted with the $\Omega(n \log n)$ lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks. Hence, our result also separates the message complexities of randomized and deterministic leader election. More importantly, our (randomized) time complexity of $O(\log^2 n)$ for obtaining the optimal $O(n)$ message complexity is significantly smaller than the long-standing $\tilde{\Theta}(n)$ time complexity obtained by Afek and Gafni and by Singh (SIAM J. Comput., 1997) for message optimal (deterministic) election in asynchronous networks. In synchronous complete networks, Afek and Gafni showed an essentially singularly optimal deterministic algorithm with $O(\log n)$ time and $O(n \log n)$ messages. Ramanathan et al. (Distrib. Comput. 2007) used randomization to improve the message complexity, and showed a randomized algorithm with $O(n)$ messages and $O(\log n)$ time (with failure probability $O(1 / \log^{\Omega(1)}n)$). Our second result is a tightly singularly optimal randomized algorithm, with $O(1)$ time and $O(n)$ messages, for this setting, whose time bound holds with certainty and message bound holds with high probability.
奇异最优随机领导人选举
针对网络中最基本的leader选举问题,本文研究设计奇异最优的分布式算法,即同时实现时间和消息最优的算法。我们的主要结果是异步完整网络的随机分布式领导者选举算法,该算法本质上(直到一个多对数因子)是奇异最优的。我们的算法以高概率使用$O(n)$消息,并在$O(\log^2 n)$时间(高概率)内运行以选出唯一的领导者。$O(n)$消息复杂度应该与领导者选举算法(不考虑时间)的确定性消息复杂度的$\Omega(n \log n)$下界进行对比,该下界由Korach, Moran和Zaks (TCS, 1989)对异步算法以及Afek和Gafni (SIAM J. Comput)证明。, 1991)用于同步网络。因此,我们的结果也分离了随机和确定性领导人选举的消息复杂性。更重要的是,我们获得最优$O(n)$消息复杂度的(随机)时间复杂度$O(\log^2 n)$明显小于Afek和Gafni以及Singh (SIAM J. Comput)获得的长期$\tilde{\Theta}(n)$时间复杂度。在异步网络中的消息最优(确定性)选择。在同步完全网络中,Afek和Gafni展示了具有$O(\log n)$时间和$O(n \log n)$消息的本质上的奇异最优确定性算法。Ramanathan等(分布)。Comput. 2007)利用随机化来提高消息复杂度,提出了一种具有$O(n)$消息和$O(\log n)$时间(失效概率为$O(1 / \log^{\Omega(1)}n)$)的随机化算法。对于这个设置,我们的第二个结果是一个具有$O(1)$时间和$O(n)$消息的紧密奇异最优随机算法,它的时间绑定具有确定性,消息绑定具有高概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信