{"title":"A Comparative Study of Sensor Fault Detection Approaches applied to an Autonomous Solar-powered Aircraft","authors":"Paulo Padrão, L. Hsu, Michael Vilzmann, K. Kondak","doi":"10.1109/ICAR46387.2019.8981577","DOIUrl":null,"url":null,"abstract":"Developed by Elektra Solar, an official spin-off of the DLR Institute for Robotics and Mechatronics (DLR-RMC), the Elektra 2 is a solar-powered autonomous aircraft designed to endure long distances as well as high altitudes. The main motivation of this work is to develop and compare three different IMU sensor fault detection (FD) approaches to be further applied to the Elektra 2 Aircraft in real flight experiments. Currently, the Elektra 2 Solar aircraft provides a simple limit-checking of certain measurements such as aircraft angular velocities and pitch, roll and yaw angles. The first proposed FD approach is based on decoupled lateral and longitudinal linear models of the aircraft in combination with the ATLMS technique. The second proposed FD approach is based on a well-defined kinematic model of the aircraft in combination with an extended Kalman filter. The third FD approach is a model-free approach based on principal component analysis. Simulation methodology covered different flight scenarios with different additive faults (abrupt, incipient, extra noise) applied to roll and pitch angles and rates.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"40 1","pages":"761-766"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developed by Elektra Solar, an official spin-off of the DLR Institute for Robotics and Mechatronics (DLR-RMC), the Elektra 2 is a solar-powered autonomous aircraft designed to endure long distances as well as high altitudes. The main motivation of this work is to develop and compare three different IMU sensor fault detection (FD) approaches to be further applied to the Elektra 2 Aircraft in real flight experiments. Currently, the Elektra 2 Solar aircraft provides a simple limit-checking of certain measurements such as aircraft angular velocities and pitch, roll and yaw angles. The first proposed FD approach is based on decoupled lateral and longitudinal linear models of the aircraft in combination with the ATLMS technique. The second proposed FD approach is based on a well-defined kinematic model of the aircraft in combination with an extended Kalman filter. The third FD approach is a model-free approach based on principal component analysis. Simulation methodology covered different flight scenarios with different additive faults (abrupt, incipient, extra noise) applied to roll and pitch angles and rates.