An Extended Local Binary Pattern for Gender Classification

A. R. Ardakany, M. Nicolescu, M. Nicolescu
{"title":"An Extended Local Binary Pattern for Gender Classification","authors":"A. R. Ardakany, M. Nicolescu, M. Nicolescu","doi":"10.1109/ISM.2013.61","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of gender recognition by proposing a new feature descriptor to be used in classification. The contribution of this work is an extension to the local binary patterns traditionally used as descriptors. Local binary patterns include information about the relationship between a central pixel value and those of its neighboring pixels in a very compact manner. In the proposed method we incorporate into the descriptor more information from the neighborhood by using four predefined patterns, rather than just one, as in the classic model. We evaluate the performance of our method on the standard FERET database by comparing it to existing methods and show that we can extract more discriminative features and subsequently provide better gender recognition accuracy.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"1 1","pages":"315-320"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses the problem of gender recognition by proposing a new feature descriptor to be used in classification. The contribution of this work is an extension to the local binary patterns traditionally used as descriptors. Local binary patterns include information about the relationship between a central pixel value and those of its neighboring pixels in a very compact manner. In the proposed method we incorporate into the descriptor more information from the neighborhood by using four predefined patterns, rather than just one, as in the classic model. We evaluate the performance of our method on the standard FERET database by comparing it to existing methods and show that we can extract more discriminative features and subsequently provide better gender recognition accuracy.
一种用于性别分类的扩展局部二元模式
本文通过提出一种新的特征描述符来解决性别识别问题。这项工作的贡献是对传统上用作描述符的局部二进制模式的扩展。局部二值模式以非常紧凑的方式包含有关中心像素值与其相邻像素值之间关系的信息。在提出的方法中,我们通过使用四个预定义的模式(而不是像经典模型那样只有一个模式)将更多来自邻域的信息合并到描述符中。通过与现有方法的比较,我们在标准FERET数据库上评估了我们的方法的性能,并表明我们可以提取更多的判别特征,从而提供更好的性别识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信