A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”

Pub Date : 2021-01-04 DOI:10.5802/CRMATH.103
Guangdong Jing, Penghui Wang
{"title":"A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”","authors":"Guangdong Jing, Penghui Wang","doi":"10.5802/CRMATH.103","DOIUrl":null,"url":null,"abstract":"The eigenvalue problem of stochastic Hamiltonian systems with boundary conditions was studied by Peng \\cite{peng} in 2000. For one-dimensional case, denoting by $\\{\\lambda_n\\}_{n=1}^{\\infty}$ all the eigenvalues of such an eigenvalue problem, Peng proved that $\\lambda_n\\to +\\infty$. In this short note, we prove that the growth order of $\\lambda_n$ is the same as $n^2$ as $n\\to +\\infty$. Apart from the interesting of its own, by this result, the statistic period of solutions of FBSDEs can be estimated directly by corresponding coefficients and time duration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The eigenvalue problem of stochastic Hamiltonian systems with boundary conditions was studied by Peng \cite{peng} in 2000. For one-dimensional case, denoting by $\{\lambda_n\}_{n=1}^{\infty}$ all the eigenvalues of such an eigenvalue problem, Peng proved that $\lambda_n\to +\infty$. In this short note, we prove that the growth order of $\lambda_n$ is the same as $n^2$ as $n\to +\infty$. Apart from the interesting of its own, by this result, the statistic period of solutions of FBSDEs can be estimated directly by corresponding coefficients and time duration.
分享
查看原文
关于“带边界条件的随机哈密顿系统的特征值问题”的注记
彭\cite{peng}(2000)研究了具有边界条件的随机哈密顿系统的特征值问题。对于一维情况,用$\{\lambda_n\}_{n=1}^{\infty}$表示该特征值问题的所有特征值,Peng证明了$\lambda_n\to +\infty$。在这篇短文中,我们证明了$\lambda_n$的增长顺序与$n^2$和$n\to +\infty$相同。该结果除了本身的有趣之外,还可以通过相应的系数和时间长度直接估计FBSDEs解的统计周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信