Finite-Time Control of a Parallelogram Five-Bar Manipulator Based on Fractional-Order Approach

Nazila Nikdel, M. Badamchizadeh
{"title":"Finite-Time Control of a Parallelogram Five-Bar Manipulator Based on Fractional-Order Approach","authors":"Nazila Nikdel, M. Badamchizadeh","doi":"10.1109/ICCKE48569.2019.8964947","DOIUrl":null,"url":null,"abstract":"Finite-time controlling of a five-bar linkage arm is investigated in this paper. The manipulator has a parallelogram structure which is not stable and has a nonlinear equation of motion. Besides, external perturbations, as well as modeling uncertainties, can disturb the system response. A PSO-optimized (particle swarm optimization) finite-time control approach is presented for the manipulator utilizing fractional calculus framework to realize an acceptable performance. Designing a controller based on fractional Lyapunov theories, the plan stability is ascertained. A variety of simulations are conducted to expose the capability of suggested strategy to control the manipulator efficaciously.","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"33 2 1","pages":"149-154"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finite-time controlling of a five-bar linkage arm is investigated in this paper. The manipulator has a parallelogram structure which is not stable and has a nonlinear equation of motion. Besides, external perturbations, as well as modeling uncertainties, can disturb the system response. A PSO-optimized (particle swarm optimization) finite-time control approach is presented for the manipulator utilizing fractional calculus framework to realize an acceptable performance. Designing a controller based on fractional Lyapunov theories, the plan stability is ascertained. A variety of simulations are conducted to expose the capability of suggested strategy to control the manipulator efficaciously.
基于分数阶方法的平行四边形五杆机械臂有限时间控制
研究了五杆机构臂的有限时间控制问题。该机械手为平行四边形结构,不稳定且具有非线性运动方程。此外,外部扰动以及建模的不确定性也会干扰系统的响应。提出了一种基于分数阶微积分框架的粒子群优化(pso)有限时间控制方法。设计了基于分数李雅普诺夫理论的控制器,确定了方案的稳定性。通过各种仿真来验证所提出的策略对机械臂的有效控制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信