Evaluation of Flight Parameters During Approach and Landing Phases by Applying Principal Component Analysis

S. K. Jasra, G. Valentino, A. Muscat, D. Zammit-Mangion, R. Camilleri
{"title":"Evaluation of Flight Parameters During Approach and Landing Phases by Applying Principal Component Analysis","authors":"S. K. Jasra, G. Valentino, A. Muscat, D. Zammit-Mangion, R. Camilleri","doi":"10.2514/6.2020-0674","DOIUrl":null,"url":null,"abstract":"This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-0674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.
基于主成分分析的进近和着陆阶段飞行参数评估
本文采用无监督学习技术——主成分分析(PCA)对飞行数据进行分析。虽然稳定方法的飞行参数已经建立了一段时间,但本文使用PCA对美国的一组机场重新评估了这些飞行参数。研究发现,某些飞行参数对某些机场更为敏感。这些参数已经与业内专家进行了交叉核对,以更好地解释它们的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信